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ABSTRACT 

In this thesis, we develop a multimodal classifier for 

authorship attribution of short messages.  Standard natural 

language processing authorship attribution techniques are 

applied to a Twitter text corpus.  Using character n-gram 

features and a Naïve Bayes classifier, we build statistical 

models of the set of authors.  The social network of the 

selected Twitter users is analyzed using the screen names 

referenced in their messages.  The timestamps of the 

messages are used to generate a pattern-of-life model.  We 

analyze the physical layer of a network by measuring 

modulation characteristics of GSM cell phones.  A 

statistical model of each cell phone is created using a 

Naïve Bayes classifier.  Each phone is assigned to a 

Twitter user, and the probability outputs of the individual 

classifiers are combined to show that the combination of 

natural-language and network-feature classifiers identifies 

a user to phone binding better than when the individual 

classifiers are used independently. 
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I. INTRODUCTION  

The cellular telephone has become ubiquitous.  

Teenagers carry them to school, and adults carry them to 

work.  They provide connection and communication, 

information and entertainment.  In the U.S., 93% of the 

population has access to a cell phone, and 24.5% of 

households have abandoned the landline to use cellular only 

[1].  Along with the cell phone, the short messaging 

service (SMS) has also gained popularity.  Americans sent 

7.2 billion SMS messages a month in 2005.  In 2010, that 

value increased to 173.2 billion a month.  The annualized 

value of 1.81 trillion text messages a year comes close to 

matching the 2.26 trillion minutes of cell phone use in 

2010 [1].  SMS messages are an integral part of modern 

communication. 

A. IDENTITY ISSUES 

The benefits and convenience of SMS messaging, 

however, bring with them new difficulties for human 

identity.  For example, one can answer a phone call and 

immediately detect that it is one’s sister on the other end 

of the line by the sound of her voice.  However, upon 

receiving a text message from one’s sister, it may be her, 

or she may have her husband key the message while she is 

driving.  While this is an innocuous example of an identity 

mismatch, it is easy to imagine more malicious behavior. 

Identity is a crucial part of network security.  

Devices communicate their identity to a network at the 

network link layer in the form of a media access control 

(MAC) address; cell phones on a Global System for Mobile 
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Communications (GSM) network use an international mobile 

equipment identifier (IMEI).  A sophisticated adversary can 

falsify or “spoof” these identification codes to appear as 

a different device.  Users authenticate to the network at 

the application layer in the form of passwords or biometric 

information.  Passwords have well-known vulnerabilities if 

they are not carefully selected, and biometrics have not 

achieved widespread use.  Users can access web-based 

applications from any internet-capable device, allowing 

independence from a specific platform. 

For authentication mechanisms in cell phone networks, 

the provider mandates the user have a physical token in the 

form of a registered phone or subscriber identity module 

(SIM) card to gain access to the network.  Even this notion 

of “registration” is not uniformly employed.  Legislators 

in the Philippines just introduced a bill in January 2011 

regulating the sale and distribution of SIM cards.  

Currently, pre-paid SIM cards and cellular phones can be 

purchased in the Philippines and many other countries, 

without having to provide any identification or register a 

legal name with a network provider.  More trivially, phones 

may also be lost or misappropriated.  Thus, it is difficult 

to tie a cell phone used in an illegal activity, such as a 

kidnapping, with its user [2].   

A registration system may improve accountability in 

cell phone use, but policy alone cannot guarantee that the 

name in the database associated with a phone is the same 

person using the phone at any point in time.  This identity 

uncertainty can also be problematic in situations that do 

not involve illegal activities.  A business that issues 
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cell phones to its employees may not want those phones used 

for non-work-related communications.  A government agency 

may want an unobtrusive way to ensure that an employee has 

not lost or loaned his phone to a family member.  In these 

situations, an authority wants to establish and monitor a 

device-to-user binding, associating a specific user to a 

specific phone.  Beyond security, a phone that is 

contextually aware may wish to display specific information 

or act differently depending on the user.  We propose that 

it is possible to identify the user of a mobile wireless 

device based on the statistical analysis of user’s text 

messaging characteristics and their phones’ radio 

transmission signals. 

B. RESEARCH QUESTIONS 

This thesis addresses two questions related to 

identity determination on mobile devices.  We first examine 

whether combining user-specific text authorship 

characteristics and device-specific signal characteristics 

in a naïve Bayes classifier improves upon the accuracy 

results of classifying these characteristics individually.  

The second question asks if this classifier can detect when 

a phone normally used by one individual begins to be used 

by a different individual.  We use an authorship 

attribution analysis of the text of short messages as the 

user classifier, and an analysis of signal modulation 

characteristics as the device classifier. 

C. SIGNIFICANT FINDINGS 

This research produced the following significant 

results: 
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• Classification of 120 individual Twitter messages 
from 50 authors using a multiclass naïve Bayes 
classifier produced 40.3% authorship attribution 
accuracy, less than the 54.4% found by Layton, 
Watters, and Dazeley using the Source Code Author 
Profiles (SCAP) method [3]. 

• Combining multiple Twitter messages to generate a 
text feature vector for input to the classifier 
improves authorship attribution accuracy.  Using 
a feature vector from 23 combined messages 
produces the best result of 99.6% accuracy. 

• Classification of 120 individual cell phone radio 
signal modulation characteristic vectors for 20 
GSM cell phones resulted in a 90% classification 
accuracy.  This compares favorably to the 99% 
accuracy of Brik et al. for modulation 
characteristics of 802.11 devices [4]. 

• Sum rule combination of the text and phone 
classifiers improves upon the results of the text 
classifier.  Multimodal classifier accuracies 
over 99% were attained when using individual 
classifiers that employed the method of combining 
multiple messages to create the input feature 
vectors. 

• The multimodal classifier was able to detect a 
simulated new user on a phone 36% of the time in 
the best-performing configuration. 

D. ORGANIZATION OF THESIS 

This thesis is organized as follows: 

• Chapter I discusses the difficulty of 
ascertaining identity on mobile devices and the 
research questions we address in our 
experimentation. 

• Chapter II discusses prior work in authorship 
attribution, device identification, and the 
machine learning techniques used in this study. 

• Chapter III describes the methods used to collect 
and process data and set up and execute the 
classification experiments. 
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• Chapter IV contains the results of the 
experiments and analysis of their significance. 

• Chapter V contains conclusions drawn from the 
results and possible areas of future research. 
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II. BACKGROUND 

A. INTRODUCTION 

Developing a binding between a user and a device 

involves merging the efforts to classify the user by 

applying authorship attribution methods, e.g., statistical 

word counts, social network structure, etc., and to 

classify the device using the characteristics of its 

wireless signal.  This chapter describes the textual and 

signal domains that provide our data.  We discuss 

authorship attribution and device identification 

techniques, followed by an overview of machine learning 

classification methods.  A description of the software 

tools used in this research concludes the chapter. 

B. TWITTER 

Twitter provides a popular “microblogging” service, 

allowing users to communicate with messages of 140 

characters or less known as tweets.  Users subscribe to 

another user’s message “feed” to “follow” them, receiving 

messages from the user they follow.  Twitter also provides 

a mechanism for users to reply to a tweet, directly send a 

message to another user, or repeat a received tweet to 

their own set of followers, thereby expanding the 

readership of that tweet.  Users have the option to specify 

that their tweets are private, viewable only by their 

followers or the direct recipient of a tweet, or publicly 

viewable.  Users post their messages to Twitter via 

twitter.com, text messages, or third party clients, 

including mobile applications.  As of September 14, 2010, 

Twitter reports it has 175 million users, while 95 million 
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tweets are sent per day [5].  We expect Twitter, and 

Twitter-like services, to continue to gain in popularity 

and that our work will be relevant to not only Twitter, but 

to new services that emerge. 

1. Twitter Attributes 

 Twitter’s primary characteristic that differentiates 

it from e-mail, chat, or a standard blog is its 140-

character length limit.  In this respect, tweets have more 

in common with short message service (SMS) messages than 

any other communication technology [6].  Many language 

conventions of chat and SMS such as abbreviated spellings, 

acronyms, misspellings, and emoticons (i.e., combinations 

of characters that represent emotions, for instance a 

smiley face using a colon and a right parenthesis) are also 

used extensively in Twitter.  While some misspellings are 

accidental, others are for effect, such as writing 

“sleeeepy” instead of “sleepy.”  Another technique we note 

in our examination of our Twitter corpus is the chat 

convention where writers use asterisks before and after a 

statement to indicate action, for example “really? *bangs 

head on desk*.”  The similarities noted between SMS and 

Twitter text imply that analysis methods that work in one 

domain will also work in the other. 

 Twitter adds two unique message attributes beyond SMS: 

the @ sign followed by a user’s screen name to indicate a 

reference to that user, and the # sign followed by a topic 

tag for use in grouping and searching messages by topic 

thread.  We shall refer to these attributes as @names and 

#tags.  In [7], Boyd, et al. found that, in a random sample 

of 720,000 tweets, 36% of them contain a @name and 5% 
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contain a #tag.  Figure 1 is an anonymized example of a 

tweet using these attributes.  In this example, the sender 

directs the tweet to @User1 in a conversational manner, 

referencing @User2 within the comment. 

 

 

Figure 1.   Typical Twitter Message 

Another common message attribute is the Internet URL.  

As a text-only communication medium, Twitter users include 

Uniform Resource Locator (URL) links to outside content 

they wish to share [8].  This practice has given rise to 

URL shorteners, services such as http://bit.ly that provide 

redirection from a longer standard URL to a shortened URL 

(i.e., http://bit.ly/a1b2c3), enabling more efficient use 

of the limited message space.  

C. PRIOR WORK IN AUTHORSHIP ATTRIBUTION 

Authorship attribution takes a piece of written 

material and attempts to identify its author.  Typically, 

this is done through a supervised learning process, taking 

material known to be written by an author and building a 

model from it, then gauging how well the writing in 

question fits the model.  Researchers have found different 

ways to build these models.  A discussion of several of 

these techniques follows, with an emphasis on those that 

have shown success with short messages. 

1. Lexical Feature Analysis 

Lexical features treat the text as a series of tokens, 

with a token consisting of a word, number, or punctuation 

@User1 no wonder @User2 never wrote me back #epicfail 
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mark, or some combination of alphanumeric characters.  The 

author model consists of statistics such the distribution 

of sentence length, vocabulary richness, word frequencies, 

etc.  An example of vocabulary richness is the ratio of the 

number of unique words in a corpus to the total number of 

words in the corpus.  Vectors built from word frequencies 

that include the most common words, such as prepositions 

and pronouns, represent the author’s style, and are most 

often used in authorship detection.  When vectors discard 

high frequency words with little semantic content, those 

prepositions and pronouns tend to perform better in topic 

detection [9]. 

In her 2007 thesis, Jane Lin used lexical features to 

profile authors of the NPS Chat Corpus by age and gender.  

In the processing of her corpus, she grouped Internet chat 

utterances by the age reported in the user’s profile, 

maintaining punctuation marks intact.  This allowed her to 

build a dictionary of common emoticons and use them as a 

feature for classification.  In her analysis she used the 

following features:  emoticon token counts, emoticon types 

per sentence, punctuation token counts, punctuation types 

per sentence, average sentence length, and average count of 

word types per document (vocabulary richness).  She used a 

naïve Bayes classifier, which we describe later, to compute 

classification accuracy both with and without prior 

probability [10]. 

Lin found that while classifying teens against 20-

year-olds showed poor results, comparing them to 

increasingly older age groups improved the results.  The 

top F-score, a metric of combined precision and recall that 
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we detail later, of 0.932 came from comparing teens to 50-

year-olds.  As most sexual predators are 26 and older, she 

compared those under 26 to those over 26 with a resulting 

F-score of 0.702.  Based on the results and her data, she 

suggested that other machine learning techniques may 

perform better [10]. 

2. N-Gram Feature Analysis 

 While the use of word features captures the style of 

the author well, it fails to capture certain features 

common to short messaging.  Emoticons, abbreviations, and 

creative punctuation use may carry morphological 

information useful in stylistic discrimination.  Custom-

built parsers, such as used by Lin in the work described 

above, could pull these features out of the text but add a 

level of complexity to tokenizing and smoothing [9].  An 

alternative approach uses character-level n-grams as the 

feature type.  This method disregards language-specific 

information such as word spacing, letter case, or new line 

markers.  It also eliminates the need for taggers, parsers, 

or any other complex text preprocessing. 

 In [11], Keselj et al. used byte-level n-grams for 

authorship attribution of English, Greek, and Chinese 

texts.  For each author they built a profile of the L most 

common character n-grams and their normalized frequencies.  

The basic theory of this method is that authorship is 

determined by the amount of similarity between the profiles 

of two texts, classifying a test profile as the author 

profile from which it is least dissimilar.  The measure of 

dissimilarity is a normalized distance metric based on the 

n-gram frequencies within the text profiles.  They refer to 
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this measurement as the relative distance between two 

texts.  For English texts by eight classic authors, they 

achieved 100% accuracy for several different n-gram and 

profile sizes.  On Greek data sets drawn from newspaper 

texts they attained an accuracy of 85%, surpassing the 

previous best reported accuracy of 73% for that data set.  

These results suggest that byte-level n-grams have some 

useful application in authorship attribution. 

 Keselj’s method of determining the difference between 

two author profiles of byte-level n-gram features was 

expanded upon and simplified by [12] in order to apply the 

technique to a different textual domain.  Instead of the 

normalized distance metric used by Keselj to differentiate 

authors, Frantzeskou et al. built profiles of the L most 

common n-grams used by the authors of computer source code 

samples.  Unlike the previous method, this approach does 

not normalize the n-gram frequencies.  They call this the 

Source Code Author Profiles (SCAP) method.  The size of the 

set of n-grams in the intersection of the two author 

profile sets measures the distance between the authors.  A 

test document gets classified as the author with whom this 

intersection set is largest. 

 Frantzeskou et al. used a corpus of C++ programs 

applying Keselj’s method and the SCAP method to data from 

six authors.  While results were similarly good for both 

methods with 100% accuracy at higher profile size (L) 

values, or number of n-grams per author, SCAP performed 

slightly better at lower values of L, and significantly 

better with bi-grams.  On a corpus consisting of Java code 

with no comments, SCAP again performed better with 
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accuracies from 92 – 100% across several values of L and n-

gram sizes.  The relative distance method performed well at 

lower values of L, but poorly at the highest L value tested 

[12].  The SCAP method provides a mathematically simple and 

effective means of conducting authorship attribution on 

source code material.  While computer program source code 

and short messages have very different structures, both 

domains may present at first glance the impression of very 

broken, oddly punctuated English.  Although Twitter covers 

a wider vocabulary range, authorship attribution methods 

effective in one domain may show similar effectiveness in 

the other. 

 The success of the SCAP method with source code led to 

an examination by [3] of its viability for authorship 

attribution of short messages, specifically those sent via 

Twitter.  Layton, Watters, and Dazeley examined 50 users 

randomly from a set of 14,000.  The 140-character limit of 

Twitter messages restricted the amount of unique characters 

sufficiently that they used a value of L that encompassed 

all characters used by an author.  The value of n was 

varied from 2 to 7 characters.  The experiment used three 

different text preprocessing methods to gauge the effect of 

the tagging conventions unique to Twitter, with one method 

removing @names from the text, one removing #tags, and one 

removing both. 

 Applying the SCAP methodology to Twitter produced a 

best result of 72.9% accuracy using character 4-grams and 

with both @names and #tags included in the message text.  

The @name influenced results the most, showing an average 

26% accuracy drop when removed.  The #tags reduced accuracy 
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by only 1% on average.  This implies that the inclusion of 

user social network analysis can significantly improve the 

ability to identify that user.  The threshold number of 

tweets per author beyond which accuracy did not 

significantly improve was found to be 120.  This study 

showed that authorship attribution of short messages with 

the SCAP method performs much better than chance, with the 

addition of information on the user’s social network 

significantly improving the classification performance [3].  

As short messages sent via SMS do not generally contain 

this social network information, their best accuracy result 

of 54.4% with both @names and #tags removed is a more 

realistic benchmark for authorship attribution of short 

messages. 

This subsection described several different methods 

for authorship attribution in a variety of textual domains.  

Figure 2 summarizes the key points discussed. 
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Figure 2.   Comparison of Several Authorship Attribution 

Techniques on Different Textual Domains (After 
[10], [11], [12], [3]) 

D. PRIOR WORK IN DEVICE IDENTIFICATION 

Accurate identification of individuals on a network is 

an important security concern.  A number of security 

exploits involve mimicking an authorized user to gain 

access to a network. There is a parallel problem of trying 

to identify individuals involved in nefarious activities 

who may be trying to obfuscate their communications 

activities by routinely changing devices or otherwise 

misrepresenting themselves on a communications network.  A 

passive means of correctly identifying an authorized device 

and its user by means of network characteristics, 

electronic emissions, and/or textual analysis could 
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minimize the impact of spoofing attacks and contribute to 

intelligence or law enforcement efforts to track a specific 

individual.  

Research in the 802.11 wireless domain shows that 

individual devices can be identified quite well by their 

radiometric signatures, even among users with the same 

brand of device.  This is due to inherent variability in 

the manufacturing process.  Other research has focused on 

authorship attribution based on analysis of an individual’s 

language use.  No known research to date has combined the 

two identification methods in an effort to improve the 

classification of users to devices in a network. This study 

will attempt to do so, with a focus on wireless and 

cellular SMS communications. 

Identification of radio frequency (RF) transmitters by 

their signal characteristics has been accomplished with 

good success, particularly in the radar domain.  That 

technology has advanced from basic measures of frequency, 

amplitude, and pulse width to fine-grained analysis of 

unintentional modulation on pulse (UMOP), which looks at 

pulse artifacts unique to individual transmitters.  Once a 

radar is positively identified as transmitting a signal, 

that radar can be identified by that signal in the future.  

Unknown radars can be classified by manufacturer.  A Litton 

Applied Technology UMOP analysis method was able to 

identify radars at 90—95% confidence level in the early 

1990s [13].  

1. Signal Transient Characteristic Method 

Communications and data signals can be more complex 

than radars, with different modulation schemes, spread 
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spectrum technology, and frequency hopping to enhance 

security, reliability, and capacity.  Several methods have 

been proposed to "fingerprint" wireless transmitters by 

their physical, link, or application layer characteristics. 

Danev and Capkun have proposed a method to fingerprint 

802.15.4 CC2420 radios by analyzing RF signal transient 

characteristics [14].  When a RF signal is transmitted, 

there is a period at the start of the signal where the 

amplitude ramps up from no energy to actual packet 

transmission at power.  This part of the signal is the 

transient, and its characteristics vary depending on the 

analog hardware of the transmitter.  Danev and Capkun 

extracted transients from 500 signals and applied a feature 

selection process to obtain distinctive templates of each.  

This process consisted of a transformation stage and a 

feature extraction stage.  The transform method that gave 

them the best results was one that measured the relative 

differences between adjacent fast fourier transforms 

spectra.  The feature extraction process took the 

transformed transient data and extracted spectral Fisher-

features using a Linear Discriminant Analysis derived 

linear transformation.  They show that their process 

identifies sensor nodes with an accuracy of 99.5%.  This 

was on a set of 50 radios made by the same manufacturer.  

They did find that changes in antenna polarization reduced 

their accuracy, so this method works well only with fixed-

location transmitters and receivers.  

2. Steady State Signal Characteristic Method 

Another identification method described by Candore, 

Kocabas, and Koushanfar, looks at the RF characteristics of 
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the steady-state part of the signal for unique elements 

imparted by transmitter hardware [15].  They do this by 

developing individual classifiers that may be weak for the 

following characteristics:  frequency difference, magnitude 

difference, phase difference, distance vector, and I/Q 

origin offset, where difference/distance/offset refers to 

difference between the ideal values and actual measured 

values of the signal.  These individual classifiers are 

then combined with weighted voting to form a stronger 

classifier.  Their work uses a Wireless Open-Access 

Research Platform (WARP) built around a computer, field-

programmable gate array (FPGA) for the digital signal 

processing, and radio cards operating in the 2.4 GHz and 5 

GHz bands.  They use Differential Quadrature phase-shift 

keying modulation and extract their signal signatures in 

the modulation domain.  After training the classifier on 

data collected from 200 frames of 1844 random symbols, they 

then use five frames to test it.  At five frames, results 

were rather poor for six different radios.  Testing with at 

least 25 frames, the individual characteristic classifiers 

each surpassed 50% identification accuracy.  Combining the 

classifiers with weighted voting, they got 88% accuracy 

with a 12.8% false alarm probability of correct transmitter 

identification on five frames.  One reason they suggested 

for the less than perfect identification results is that 

their WARP radio cards contain many digital components, 

which would have less inherent variability than other 

radios with more analog components in the transmission 

processing stream.  If that is true, our software-oriented 

test system may show the same signal stability.  
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3. Modulation Characteristic Method 

The modulation domain was used again in a paper by 

Brik et al., this time applied to 802.11 network interface 

cards (NIC) [4].  They developed a methodology called the 

passive radiometric device identification system (PARADIS). 

Four of the five characteristics they used were the same as 

in the WARP paper:  frequency error, I/Q origin offset, 

magnitude error, and phase error.  They also used another 

characteristic called SYNC correlation, which is the 

difference between the measured and ideal I/Q values of the 

SYNC, the short signal used to synchronize the transmitter 

and receiver prior to transmitting the data.  The 802.11 

physical layer, in many instances, encodes data with two 

sub-carriers, in-phase (I) and quadrature (Q) that are 

separated by π/2.  In quadrature phase shift keying (QPSK), 

each symbol encodes two data bits and is represented by 

points in the modulation domain using a constellation 

diagram that plots the points in each of the four quadrants 

of a two-dimensional grid.  Errors in modulation are 

usually measured by comparing vectors corresponding to the 

I and Q values at a point of time.  Phase error is the 

angle between the ideal and measured phasor.  Error vector 

magnitude is magnitude of vector difference between ideal 

and measured phasor.  Those errors are taken as averages 

across all symbols in the frame in order to minimize the 

effects of channel noise.  Figures 3 and 4 are a graphical 

display of the error measurements.  
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Figure 3.   QPSK Error Shown on an I/Q Plane (From [4]) 

 
Figure 4.   Vector Display of Modulation Errors (From [4]) 

For their experiment, the Brik group used identical 

Atheros NICs configured as 802.11b access points and an 

Agilent vector signal analyzer as the sensor.  They tried 

both a k-Nearest Neighbor (kNN) and support vector machine 

(SVM) classification schemes to associate a MAC address to 

a NIC based on the collected modulation parameters.  After 

evaluating data from 138 NICs, the best feature set was 

found to be, in order, frequency error, SYNC correlation, 
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I/Q offset, magnitude and phase errors for SVM.  Freq 

error, SYNC correlation, I/Q offset for kNN.  The SVM 

classifier error rate was 0.34%, and kNN classifier error 

rate was 3%.  Based on their data, no one NIC was able to 

masquerade as another.  Modulation similarities were under 

5% for 99% of the cards.  One NIC had a similarity to 

others of 17% [4].  They also suggest that this method 

could work with any digital modulation scheme.  

4. Transport Layer Characteristic Method 

A passive fingerprinting technique proposed by Kohno, 

Broido, and Claffy, eschews the physical layer signal 

analysis, instead exploiting the transport layer for 

identity information by measuring clock skew in transport 

control protocol (TCP) timestamps [16].  Their method 

exploits two clocks on a computer:  the system time clock 

and a TCP timestamps option clock internal to the TCP 

network stack.  The system time clock may or may not be 

synchronized with true time by connection to a Network Time 

Protocol server.  If not, the difference between system 

time and true time can be measured.  Most modern operating 

systems enable the TCP timestamps option in their network 

stack.  Thus, each TCP packet sent contains a 32-bit 

timestamp embedded in the packed header.  They describe 

methods for passively collecting TCP timestamps from 

computers running various operating systems and formulas 

for calculating clock skew from the timestamps.  They also 

describe a method for estimating system clock skew by 

sending Internet control message protocol ICMP Timestamp 

Requests to a targeted device, but focus on the TCP method, 

as most network stacks use clocks operating at lower 
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frequencies than system clocks.  Also, many routers and 

firewalls filter ICMP messages.  For clock skew measurement 

to be effective, different devices must have different 

clock skews, and the skews must be consistent over time.  

Others have shown that both those assumptions hold, but 

they prove it by collecting two hours of traffic on a major 

link and using their process to find the clock skew of the 

first hour, second hour, and entire period and comparing 

them for each source that was active at least 30 minutes of 

each hour.  A plot of their findings found that they were 

able to differentiate between some individual machines by 

their clock skew, but not all.  This is an interesting 

method but not useful in our research, as cell phones 

synchronize their clocks with their network upon 

connection. 

E. GSM OVERVIEW 

The Global System for Mobile Communications (GSM) 

standard is the basis for the most popular mobile phone 

system in the world, with over 3 billion connections [17].  

Its ubiquity and well-established hardware technology make 

it a good platform for experimentation and a good target 

for exploitation.  GSM operates as a cellular network with 

a set of base stations distributed over a service area.  

The distribution is based on the desired coverage level, 

which depends on geography and connection demand.  A rural 

area may have a few, high powered base stations spread out 

over a large area, while an urban area might have many 

lower powered units in close proximity [18].  The structure 

of a GSM network is shown in Figure 1.  The two left blocks 

of Figure 1 contain the part of the network relevant to 
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this study:  the handset, the base transceiver station 

(BTS), and the air, or Um, interface between the two.  

 
Figure 5.   GSM Network Structure (From [19]) 

1. GSM Network Infrastructure 

In a GSM network, the BTS contains the antennas, the 

transceivers for transmitting and receiving RF signals, and 

encryption gear as needed.  While the complete capabilities 

of the BTS vary depending on the network provider, the 

minimum function is to receive the modulated analog RF 

signal from the handset, convert it to a modulated digital 

signal, and send it to the base station controller (BSC).  

The BTS can contain more functionality, to include handling 

handover between cells.  The BTS is controlled by the BSC, 

which typically controls several BTSs in a network.  The 

BSC manages the frequency channels used by its towers, 

handles handovers and switching among its towers, and may 

do the conversion from the air interface’s voice channel 

coding to the coding used in the circuit-switched Public 
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Switched Telephone Network (PSTN) [20].  A small and simple 

limited network can be assembled using only a BTS with 

appropriate software to manage a specific number of 

handsets.  The network assembled for the experimentation 

conducted here is one such limited network.  

2. Mobile Handset  

The end of the cellular wireless network most familiar 

to typical users is the handset.  Along with a transceiver 

and digital signal processing unit, a GSM handset also 

contains the subscriber identity module (SIM) card.  The 

SIM card is what identifies the user to the network, 

allowing the network to choose to provide or deny access to 

the user.  A user can easily switch phones and still access 

their subscribed services by transferring their SIM card to 

the new phone, assuming that phone is unlocked and 

compatible with the network technology.  The indentifying 

feature of the SIM card is the International Mobile 

Subscriber Identity (IMSI) number.  Each SIM card has a 

unique IMSI associated to the user.  The phone itself also 

has a unique identifier, the International Mobile Equipment 

Identity (IMEI) number [20].  These two numbers are 

unrelated, though both may be transmitted through the 

network as part of control signal metadata.  

The air interface between the handset and the BTS is 

the focus of part of the experimentation conducted here.  

GSM providers operate in the licensed 450 MHz, 850 MHz, 900 

MHz, 1800 MHz, and 1900 MHz radio frequency bands.  Uplink 

and downlink bands are typically each 25 MHz wide and 

separated by 45 – 50 MHz.  Each of these bands is divided 

into 124 carrier frequencies with a 200 kHz bandwidth.  An 
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uplink/downlink channel pair is referred to by an absolute 

radio frequency channel number (ARFCN).  Time-division 

multiplexing is used to divide each channel into eight time 

slots.  A single timeslot in a specific ARFCN is called a 

physical channel (PCH) [21].  Thus, GSM combines FDM and 

TDM to make the most efficient use of its spectrum 

assignment.  Each timeslot, or burst, generally consists of 

two 57 bit data fields separated by a 26 bit “training 

sequence” for equalization, three tail bits at each end, 

and an 8.25 bit guard sequence.  Gaussian Minimum-Shift 

Keying (GMSK) is the signal modulation scheme used to 

modulate the digital data into the analog RF signal [21]. 

3. GSM Modulation 

GSM uses the Gaussian Minimum Shift Keying modulation 

scheme.  This modulation method applies a Gaussian filter 

to the data signal prior to the MSK modulator.  MSK is a 

form of digital frequency modulation with a 0.5 modulation 

index.  It has several properties that make it good for 

efficient mobile radio use:  a constant envelope, a narrow 

bandwidth, and coherent detection capability.  This makes 

it relatively impervious to noise.  The one thing it lacks 

is the ability to minimize energy occurring out-of-band in 

transmission.  The Gaussian filter has a narrow bandwidth 

and the cutoff properties to minimize extraneous 

frequencies, shaping the input data waveform so that the 

output fits a constant envelope.  The single channel per 

carrier characteristic of GSM, with carriers spaced 200 kHz 

apart, minimizes off-carrier energy, and thus the Gaussian 

filter is important to clear transmission [22].  
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The modulation sequence of a typical GMSK signal 

modulator is shown in Figure 6.  In this example, a stream 

of binary data formed in a Non-Return-To-Zero (NRZ) 

sequence is sampled and integrated into an analog signal.  

It is then convoluted with a Gaussian function to filter 

out the energy outside the Gaussian form.  The real, in 

phase (I) and quadrature (Q) components of the data signal 

are calculated, then modulated onto the I and Q carrier 

waves.  The two components are added, and the modulated 

signal is formed [23].  

 

 

Figure 6.   GMSK Modulation Block Diagram (From [23])   

Demodulation of the GMSK signal is more complicated, 

particularly for GSM applications.  Operating in the 900 

MHz range, GSM is subject to a significant amount of 

interference, to include signal attenuation, multipath 

propagation, and co-channel or adjacent band interference.  

The GSM standard does not specify a demodulation algorithm, 

but does say that it has to be able to handle two multipath 
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signals of equal power received at up to 16 µs apart.  This 

implies that an equalizer is required to separate signals.  

Viterbi demodulation incorporates an assumption on the 

possible signal and additive noise and uses a probabilistic 

maximum likelihood calculation to produce the most probable 

received signal [23].  A diagram of a typical demodulator 

is shown in Figure 5.  It splits the received signal into 

the I and Q components and demodulates each from its 

carrier wave.  After going through a low-pass filter to 

clean up some of the noise, the I and Q components of the 

data stream are combined and the signal is converted back 

to a digital NRZ signal [23]. 

  

 

Figure 7.   GMSK Demodulation Block Diagram (From [23]) 

F. MACHINE LEARNING TECHNIQUES 

Authorship attribution entails creating a profile of 

an author and matching that pattern to a piece of text.  

Machine learning accomplishes this by building a model 

based on statistical methods, then customizing the model 

with training data or previous experience.  The goal of the 

model is not to memorize the behavior of the training data, 
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but to use it to decide if new data points fit into the 

pattern.  While there are many machine learning techniques 

based on different statistical mechanisms, this research 

employs naïve Bayes. 

1. Naïve Bayes Classifier 

The naïve Bayes classifier uses Bayes’ Rule of 

probability to assign a given set of features to a class.   
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Bayes’ rule is particularly useful in many practical 

situations where it is easier to estimate the conditional 

probability of a particular feature given a class.  The 

conditional probability of the class given the features, 

P(C|F), depends on the probabilities of the class and the 

features and the probability of the features given the 

class.  When F is a vector of d random feature values, F = 

(f1,…,fj,…,fd), and all documents fall into one of n random 

classes conditional on the feature set, C = (c1,…,ck,…,cn), 

Bayes’ Rule may be expressed as [24]: 
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 The classification problem becomes simple when P(ck|F) 

is known; as discussed in [10], [25], and [26] the document 

with feature vector F is assigned to the class with the 

highest conditional probability value, c*: 
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The P(F) term does not change between classes, which allows 

us to omit it from the argmax term, simplifying the above 

formula to: 

[ ]* arg max ( | ) ( )
k

k k
c C

c P c P c
∈

= F  

In a standard authorship attribution problem, that 

conditional probability is not known and must be estimated 

from the data and Bayes’ rule.  One assumption we make in 

using naïve Bayes is that the occurrence of any one feature 

fj is independent of any other feature fj’ in a document of 

class ck.  Thus, the distribution of the feature vector over 

ck may be modeled as: 

1

( | ) ( | )
d

k j k
j

P c P f c
=

=∏F  

Combining the two previous formulas gives the following: 
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 The product operation applied to probabilities can 

cause the above equation to yield very small values for c*.  

This is a particular concern when working with n-gram 

features, as the probability values of some n-grams over a 

large amount of text may be very small to start with.  

Changing the product term to a sum of logarithms term can 

prevent numeric underflow: 

1
* arg max log ( ) log ( | )
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The P(ck) term reflects the prior probability of the 

class occurring in the data set.  This is typically modeled 

in one of two ways:  as a uniform distribution of classes, 

or as the actual proportion of the count of the class in 

the training data.  A training set containing equal 

occurrences of four classes gives a prior probability of 

0.25.  One in which half the class occurrences belong to c1 

gives that class a prior probability of 0.5.  Thus the 

balance of classes in the training data affects the naïve 

Bayes classifier result. 

2. Smoothing 

The naïve Bayes classifier builds a probabilistic 

model of a class based on training data from that class.  A 

problem arises when the test data contains features that 

the model has not seen in training.  These zero counts have 

a zero probability, leaving the naïve Bayes classifier 

unable to predict a class.  Smoothing, the process of 

shifting probability mass from frequently appearing 

features to zero count features while retaining their 

relative influence on the classifier, mitigates this 

problem.  Two smoothing techniques, Laplace and Witten-

Bell, are discussed here. 

a. Laplace Smoothing 

A simple algorithm, Laplace smoothing adds a 

value of 1 to each feature count in the data set, both test 

and training.  This prevents a zero probability situation 

by ensuring every feature has a probability of occurring 

based on at least a single count, even if it does not 

appear in the training data.  Adding to the feature counts 
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requires a similar adjustment in the normalization step.  

If N is the total count of all tokens in the data set and V 

is the count of unique tokens, or types, a total of V is 

added to the individual counts by adding 1 to each [26].  

The normalization must also be adjusted by V for a Laplace 

probability formula for a term: 

1( ) i
Laplace i

cP t
N V
+

=
+

 

b. Witten-Bell Smoothing 

Instead of altering the count of all features in 

the data set, Witten-Bell uses the probabilities of the 

features occurring in the training set to estimate the 

probability of an unseen feature.  As the training set is 

processed, the probability that the next token will be of 

type i is given by [27]: 
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where n is the number of tokens seen so far and v is the 

number of types seen so far.  The total probability of an 

unseen type occurring next is based on the fact that it has 

already occurred v times in the training set and given by 

[27]: 

( )W B novel
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3. Combining Classifiers 

A classifier for detecting a device to user binding 

must derive information from both the user and the device.  

In this research, the user is modeled by their short 

message writing style and the device is modeled by signal 
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characteristics.  The variety of features used makes it 

mathematically difficult to simply plug them all into one 

high-dimensional classifier, though it is possible with 

appropriate normalization of the data.  The fields of 

biometrics, image analysis, and handwriting analysis also 

use diverse feature sets for classification of target 

items.  Researchers in these fields have developed methods 

to combine multiple classifiers, each focusing on a single 

feature type, into a multimodal classifier system producing 

accuracy rates superior to those of the individual 

classifiers used independently. 

Design of a multimodal classifier depends on the 

outputs of the individual input classifiers.  When 

combining single class labels, a majority vote scheme may 

be used.  The class labels output by each component 

classifier are counted, with the class that collects the 

most votes selected as the output of the combined 

classifier [28].  Variants of this system may apply 

weights, potentially learned, to the inputs to the combined 

classifier based on a quality metric or require the winning 

class to have more than a simple majority.  Input 

classifiers providing a set of ranked class labels use a 

combined classifier that joins the individual sets and re-

ranks the labels, selecting the top-ranked label as the 

output [29]. 

The input classifiers that generate the greatest 

amount of classification information provide the 

probability distribution of the class labels, such as the 

posterior probabilities produced by a Bayesian classifier.  

[29] shows how the output probabilities Pk(Ci|x) of several 
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Bayesian classifiers may be averaged to create posterior 

probabilities of the combined classifier: 

1

1( | ) ( | )
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where i ranges from 1 to M classes and k from 1 to K 

classifiers.  The class selected by the combined classifier 

is the one with the maximum value of PE(Ci|x).  A similar 

method uses the median value of posterior probabilities, as 

averages can be skewed by large outlier values.  The 

combined posterior priorities become: 
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where Pm(Ci|x) is the median value of Pk(Ci|x) for the class.  

These methods provide a simplistic way to combine the 

output probabilities of Bayesian classifiers, with the 

median technique providing particularly good results as 

discussed in the biometric experimentation below. 

Bayesian probability theory lends itself to developing 

classifier combination schemes using the probability 

distributions output by individual classifiers.  [28] 

provides the derivation of the product and sum rules based 

on the joint probability distribution P(x1,…,xR|Ci).  

Assuming the measurements are statistically independent, 

the probability distribution becomes the product of all the 

individual probability values P(xk|Ci).  Applying Bayes’ 

rule and the Bayes classifier decision process yields the 

product rule where Z is assigned to class Ci if: 
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The sum rule makes the assumption that the posterior 

probabilities of the individual classifiers will not differ 

significantly from the prior probabilities.  In that 

situation, the posterior probabilities may be expressed as: 

( | ) ( )(1 )i j i ijP C x P C σ= +  

where σij << 1.  Substituting this value in the product rule 

form gives: 
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Expanding the product on the right hand side of the 

above equation and ignoring the second and higher order 

terms, as they will approach zero in size, allows us to 

rewrite the equation as: 
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The decision rule for the sum method then states that 

Z is assigned to Ci if: 
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In an experimental comparison of classifier 

combination methods [28] evaluated three biometric 

modalities, frontal face image, face profile image, and 

voice.  For 37 users, the face images were trained with 

three pictures and tested with one.  Similarity in facial 

images was gauged by distance measurements.  The voice 

classifier used Hidden Markov Models to classify utterances 
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of digits from zero to nine.  Results for the individual 

classifiers showed speech provided the best performance 

with a 1.4% error rate, profile images with 8.5%, and 

frontal face images with 12.2%.  When the results of the 

three classifiers were combined using the techniques 

described above, the sum rule provided the best results, 

with 0.7% error rate.  The product rule gave 1.4% and the 

median rule 1.2%.  While the product rule was unable to 

improve on the best individual classifier, the sum and 

median rules both yielded better results.  The assumptions 

made by the sum rule, that posterior and prior 

probabilities will not differ much, are not very realistic, 

but the insensitivity of the method to estimation errors 

allows it to yield good accuracy rates.  This work shows 

that combining individual classifiers of different features 

may improve the results of a multimodal classification 

problem. 

G. EVALUATION CRITERIA 

Once the classifier has run, we must have a way to 

evaluate the results and compare those of different 

experiments.  Standard performance metrics include 

precision, recall, F-score, and accuracy.  [26] and [30] 

explain these measurements.   

Precision measures the proportion of documents 

correctly classified as belonging to a particular class, or 

the number of documents correctly labeled as a class 

divided by the total documents labeled as that class. 

Recall measures the proportion of documents belonging 

to a particular class that the classifier actually 

identified, or the number of documents correctly labeled as 
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a class divided by the total number of those documents in 

the data set.  The formulas for precision and recall 

follow: 

TPprecision
TP FP

=
+

 

TPrecall
TP FN

=
+

 

Where TP is a true positive, the number of documents 

correctly assigned to a class.  FP is a false positive, the 

number of documents incorrectly assigned to a class.  FN is 

a false negative, the number of documents of one class 

identified as a member of another class. 

The F-score combines these two measures into one 

metric balanced so that neither one affects the result more 

than the other.  This prevents the experimenter from making 

design adjustments that favor one measure or another.  F-

score is the harmonic mean of the precision and recall: 

2
1 1F

P R
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Accuracy is a generalized measure of the performance 

of the classifier, finding the proportion of documents 

labeled correctly.  It is obtained by dividing the number 

of correctly classified documents by the total number of 

documents in the set.  While accuracy gives some indication 

as to the effectiveness of the classifier, precision and 

recall do a better job of reflecting false negatives.  

False positives and false negatives are relevant in binary 
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class problems but not in multiclass problems such as the 

one this research focuses on, meaning accuracy is a useful 

metric of evaluation. 
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III. TECHNIQUES 

A. INTRODUCTION 

This chapter describes the design and analysis of the 

experiments conducted over the course of this research.  We 

first explain how the Twitter data was collected and 

processed to generate the corpus.  Then we discuss the 

authorship attribution analysis of the text data.  Next is 

a description of the signal collection process followed by 

the device identification analysis of the signal data.  

Last, we detail the machine learning classifier combination 

scheme and analysis. 

B. CORPUS GENERATION 

1. Twitter Streaming 

 The text data for this research was collected from 

Twitter’s public streaming Application Programming 

Interface (API).  This interface allows users to write 

programs to collect and filter Twitter status updates, to 

include replies to other tweets, a user mentioned by 

another user, and direct messages, created by a non-

protected public account.  A Twitter account is required to 

access the streaming API.  To initiate a connection to the 

Streaming API, the client forms an HTTP request to a 

Twitter server.  Once the connection is established, the 

client consumes the resulting stream indefinitely.  Closure 

of the connection may be initiated by the user, or because 

of duplicate log-ins, server restarts, lag in the 

connection due to bandwidth or a slow client, or Twitter 

network maintenance [31]. 
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 The streaming feed provides data in extensible markup 

language (XML) or JavaScript object notation (JSON) format.  

The stream can be filtered by any of the keys in the data 

structure, to include user ID, keyword, or geographic 

location.  Twitter offers a service called Firehose, which 

delivers all public status update data for a fee.  The free 

sample feed from the basic streaming API randomly samples 

1% of the Firehose stream.  The exception is when 

conducting a following filter on a user ID, which has the 

effect of “following” that user, capturing all status 

updates associated with him [31]. 

2. Text Data Collection and Processing 

 To build a representative, real-world, short-text 

messaging corpus, we collected the basic Twitter sample 

feed on a near-daily basis from June 16, 2010 to August 26, 

2010.  Collection of the feed occurred during weekdays and 

some nights and weekends.  Any tweets in the stream flagged 

as retweets were removed in order to prevent associating 

text not written by a user with that user.  The tweets were 

sorted into files by user ID.  We manually discarded users 

with fewer than ten tweets, users that did not tweet in 

English, and users with tweets that appeared to be spam, 

news headlines, or overly repetitive.  A goal of 50 users 

with over 500 tweets per user was set to provide a robust 

text corpus that would also allow comparison to the Twitter 

text analysis in [3]. From the group of “good” users, we 

selected the 53 most prolific and conducted further 

collection from November 8, 2010, to December 17, 2010, 

using the follow feed to obtain all tweets sent by, to, or 
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referencing those users.  Out of the 53, we were able to 

obtain 50 authors active enough to meet our tweet quantity 

goal.   

The initial sample feed collection resulted in 4045 

tweets by 53 users.  The follow feed collection boosted 

this value to 114,000 tweets.  The tweets were processed to 

remove @names and #tags from the text and throw out any 

tweets with fewer than three words.  Those short tweets 

tended to consist of emoticons or brief comments of 

approval, amusement, disgust, or other expressions.  

Removing the short tweets changes the total tweet count to 

97,090.  Table 1 provides the total tweets and maximum, 

minimum, and median tweets per author for each collection 

run and following processing. 

Table 1.   Collection Quantities 

Sample 
Feed

Follow 
Feed Processed

Total 4045 114000 97090
Minimum 60 290 278
Maximum 134 9004 8416
Median 73 1890 1644  

 

The next step in data preparation was to split the 

tweets into files by author.  Each tweet constituted one 

line in the author file.  To provide anonymity, the files 

were labeled with a randomly selected number code instead 

of the user ID.  A line-by-line random shuffle was applied 

to each file to randomize the order of tweets.  For the 

first set of experiments, the first 230 tweets of each file 

were taken as the text data set.  As one tweet contains 

very little feature count information to build a profile, 
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we tried combining several tweets into one document to 

represent the author.  The 230 tweets were divided into ten 

documents of 23 tweets each to serve as the training set.  

In another set of experiments each document contained only 

one tweet, for a training set of 230 documents.  This 

treats each utterance independently in the subsequent 

classification process.  A third experiment used 120 tweets 

from each author with one tweet per document in order to 

compare results with those in [3].  The text files were 

shuffled prior to extracting the 120 tweets, generating a 

different text set than the 230 tweet set.  Other 

experiments were conducted with varying tweet quantities 

and training set sizes, which are explained in the Results 

section of this thesis. 

C. AUTHORSHIP ATTRIBUTION PROCESS 

Figure 8 shows a flowchart of the text processing and 

classification process. 
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Figure 8.   Naïve Bayes Classification Process 

1. Feature Extraction 

 From the data set, we derive the features used for 

classification.  As explained in the previous chapter, 

character n-grams tolerate noise well and capture an 

author’s style and punctuation use, all important in 

classifying short messages like Twitter.  This 

experimentation broke each tweet into character 2-, 3-, 4-, 

5-, and 6-grams.  The start and end of each post was 

indicated by a “_” character appended to the first and last 

character in the post to provide information on the 

placement of the n-gram.  The “_” character also 

represented white space.  Any capitalization or 
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misspellings were preserved.  Table 2 shows the top five n-

grams and their counts for each value of n in the entire 

corpus. 

Table 2.   Top Five n-grams 

2‐gram count 3‐gram count 4‐gram count 5‐gram count 6‐gram count
e_ 131034 _th 53687 _the 29704 _the_ 19574 _that_ 7466
t_ 99995 the 33572 _you 21952 _you_ 13674 _like_ 6282
_t 97549 ing 27566 ing_ 21798 _that 10328 _just_ 4910
s_ 72470 he_ 26976 the_ 20004 _and_ 9700 _have_ 4856
th 68538 _to 26260 _to_ 19066 that_ 7732 _with_ 3762  

 

The n-grams are conceptually generated using a sliding 

window of size n moving over the utterance, recording and 

counting each n-character token.  All punctuation marks and 

white spaces are included as characters.  A software 

program parses each tweet and records the n-grams and 

counts associated with each author, saving them in a file 

in the NPSML format, one file for each value of n.  NPSML 

format is shown in Figure 9.  The key field was the name of 

the file from which the feature labels and counts were 

derived.  All weights were set to 1.0 for all files.  The 

class field was set to the identifier code of the author of 

the utterance. 

 
Figure 9.   NPSML Format 

Prior to running the classifier, we must split the 

feature count files into test and training sets.  An 

internal line shuffle program randomized the order of the 
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posts in the feature count files.  A ten-fold cross 

validation was applied, in which a feature count file was 

split into ten subfiles, with nine used for training the 

classifier and one used for testing it.  The nps-bTTSplit 

software program from the NPS Machine Learning Library [32] 

was used to generate the test and train files, ensuring 

each author was represented with an equal number of posts 

in each of the subfiles.  None of the posts used in a 

training file were also used in the associated test file. 

2. Naïve Bayes Classifier 

 This experimentation used the Naval Postgraduate 

School Natural Language Processing Lab naïve Bayes 

classification package.  This software package uses the 

NPSML file format as input.  The learning portion uses the 

smoothed feature counts from the input training data file 

to generate a probabilistic model.  One set of experiments 

was conducted using Laplace add-one smoothing.  A second 

set was conducted using Witten-Bell smoothing.  The 

classification program used the model generated by the 

learning program and the NPSML-formatted test data to 

determine the most probable class assignment for each test 

utterance.  The program output the key and predicted class 

for each utterance in the test file.  Each fold of the 10-

fold cross validation was run and the outputs averaged for 

the final classification result.  As each author has an 

equal number of tweets in the data set, prior probabilities 

for each author were fixed and equal. 



 46

D. PATTERN OF LIFE ANALYSIS 

Human beings often fall into habitual daily routines.  

The act of communicating with others may fit into this 

routine, allowing an observer to discern a pattern.  A user 

may log into his computer at the same time every weekday 

morning, or call his mother to chat during his commute home 

every evening.  Analyzing a user’s communication patterns 

may aid in the identification of the user. 

1. Twitter Time Analysis 

Each tweet collected includes a date/time field.  

Figure 10 shows the format of the date/time field.  This 

analysis focused on a simple pattern analysis of send time 

by hour of the day.  This may capture any user patterns 

centered on a work or school schedule. 

 
Figure 10.   Date/Time Field Format 

The date/time fields were stripped from each tweet and 

saved in a separate file for each user.  A line-by-line 

shuffle program randomized the order of the timestamps.  

The first 120 were taken from each author file as a sample 

set.  This sample set was then subdivided, grouping 

timestamps into files labeled with the author as the class.  

We used training set sizes of three, five, ten, and twelve 
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for testing.  The files were processed into the NPSML 

format with the sent hours and their counts as the keys and 

values contained in each file.  The NPSML files were 

processed in the same manner as the text files.  The hours 

and counts were divided into test and training groups, 

holding out 10% as a test set.  The naïve Bayes learning 

and classify programs were run on a 10-fold cross 

validation using Witten-Bell smoothing and the results 

averaged to determine the final output class for each test 

input.  Other experiments were conducted with varying 

timestamp quantities and training set sizes, which are 

explained in the Results section of this thesis. 

2. Social Network Analysis 

Another characteristic of an individual’s 

communication patterns is the group of people with whom he 

communicates.  In a telephone or SMS network, discerning 

this would require some access to signaling information or 

service provider records.  In Twitter, users often include 

the screen name of the user they are specifically speaking 

to or about in their tweet.  Layton et al. noted a 26% 

reduction in the accuracy of their authorship attribution 

method when screen names were removed from the tweets.  For 

a simple social network analysis, we examined the screen 

names referenced by the users in our corpus independent of 

the text of their tweets. 

The data processing used to conduct the social network 

analysis was identical to the date analysis.  Instead of 

pulling the date/time field out of each tweet, any @name 

found in parsing was saved to a file by author.  The 

shuffling, splitting, and grouping into training sets was 
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conducted using sets of three, six, ten, and twelve out of 

120 @names per author.  NPSML files of @names and their 

counts per author were built.  These were divided into test 

and train sets, and naïve Bayes learning and classification 

with Witten-Bell smoothing was performed on a 10-fold cross 

validation with the results averaged to give final output 

classes for each input. 

E. CELL PHONE SIGNAL ANALYSIS 

Based on the success of [4], we focused on signal 

modulation features to build device characteristic vectors.  

GSM modulation parameters are governed by the European 

Telecommunications Standards Institute (ETSI) in their 3rd 

Generation Partnership Project (3GPP) standards [33], [34].  

Cell phone manufacturers test their products for quality 

assurance purposes, ensuring phone users have an acceptable 

link quality and that phones do not interfere with other 

users.  Three signal characteristics that are measured and 

controlled are peak phase error, root mean square (RMS) 

phase error, and frequency error.  The Agilent 8922S GSM 

Test Set is a signal analyzer geared for measuring these 

standard modulation characteristics of a GSM mobile 

station. 

1. Signal Collection 

The equipment used in conducting the mobile station 

signal measurements was the Agilent 8922S GSM Test Set, the 

LGS Innovations Tactical Base Station Router (TacBSR), and 

an assortment of unlocked GSM-capable cell phones.  The 

8922S was run in test mode with small whip antenna serving 

as the RF input element.  The use of an antenna required 
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adjustment of the expected input amplitude decibel value.  

This varied by phone and was set based on Test Set 

measurements of the phone output power and the presence or 

absence of RF overload errors.  Figure 11 shows the cell 

control screen where these values were set. 

 
Figure 11.   Cell Control Screen (From [35]) 

In test mode, the 8922S transmits a GSM broadcast 

signal on a specified frequency channel, or absolute radio 

frequency channel number (ARFCN).  It has a separate ARFCN 

designated for the traffic channel the phone will use to 

communicate with the BTS.  Our phones could not connect to 

the 8922S as a BTS with the antenna and SIM cards we had 

available for use, so we used the TacBSR as the BTS.  The 

TacBSR was configured to operate in the E-GSM900 spectrum 

using ARFCN 875 as the traffic channel.  This correlates to 

an uplink frequency of 882.2 MHz.  The 8922S was configured 

as a midpoint collector listening to ARFCN 875.  All the 

phones we tested operated in this GSM band. 
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Besides the amplitude of the input, two other settings 

required adjustment before taking measurements, the traffic 

channel timeslot and the trigger delay.  When setting up a 

call with the TacBSR, we noted the calling phone was 

assigned timeslot 2 and the called phone was assigned 

timeslot 3.  To establish a traffic channel for 

measurement, we had to establish a voice call between two 

phones.  The calling phone was noted and proper traffic 

channels were set when conducting measurements.  The 

trigger delay sets the time delay between a valid trigger 

event and the beginning of a measurement.  The 8922S uses 

the midamble of a GSM frame as a trigger, as it is easy to 

detect.  The Data Bits screen of the Phase/Frequency page 

shows the bit sequence of the GSM frame, highlighting the 

midamble.  Figure 12 shows an example of this screen.  The 

trigger timing was set by observing the value of the First 

Bit field and adjusting the trigger delay to force that 

value close to zero. 

 
Figure 12.   Data Bits Screen (From [35]) 
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Once the amplitude, timeslot, and trigger delay were 

set, we measured the three modulation characteristics.  A 

more detailed explanation of the modulation measurements is 

included in Appendix A.  This was done from the 

Phase/Frequency page, shown in Figure 13.  To get an 

average value over a fixed number of transmission bursts 

for each measurement, we used the multi-burst feature for 

ten bursts.  The measured phone was held near the antenna 

of the 8922S, while the phone on the other end of the call 

was placed across the room to minimize cross-channel 

interference.  We collected 30 values for peak phase, RMS 

phase, and frequency error as averaged over 10 transmission 

bursts.  The values were read from the screen and recorded. 

 
Figure 13.   Phase and Frequency Error Screen (Multi-

burst on)(From [35]) 
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The data collection method for the cell phone features 

was sufficiently time and labor intensive that we used the 

30 data samples of each feature from each phone as the 

foundation for building a larger data set.  The measured 

values of each feature were input into a program that built 

a probability density function based on a histogram of the 

results.  The program smoothed the samples by building a 

histogram, and then used the scipy gaussian_kde module to 

create the probability density function.  It then drew a 

specified number of random values weighted by the 

probability density [36].  We used this method to generate 

160 more values representative of each handset.   

2. Data Analysis and Classification 

The modulation characteristic data required some 

preprocessing before use as an identification vector.  An 

average and standard deviation value was calculated for 

each characteristic for each phone.  The smallest standard 

deviation value of each feature was used as a bin size, and 

the raw data was binned, generating histograms for each 

phone.  For example, if the standard deviation of the 

frequency error for phone 1 was 8.2, phone 2 was 9.5, and 

phone 3 was 7.3, the bin size for frequency error for the 

three phones would be 7.3.  Binning the data reduced noise 

from the measurement process and discretized values from 

continuous domains to aid in feature counting for the 

classification step.  Each set of {peak phase error, RMS 

phase error, frequency error} bin values for each 

collection data point served as a feature vector for the 

phone it was associated with. 
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For learning and classification, the feature vectors 

were split into separate files.  As with the time and name 

analysis, we experimented with varying the size of the 

training set.  A software program turned each set of files 

into an NPSML-formatted file of features and their counts.  

The NPSML files were provided as input to the NPS naive 

Bayes learning and classifying programs.  The average 

results of a 10-fold cross validation were given as the 

output classes.  We conducted experiments with varying 

numbers of feature vectors and document sizes, which are 

explained further in the next chapter of this thesis. 

F. COMBINING CLASSIFIERS 

Once the individual classification results were 

obtained, we experimented with combining these results to 

see if there was any subsequent improvement in accuracy.  

The NPS nb-classify program can provide as its output the 

logarithms of the probabilities for each class label.  

Based on the availability of that information and the prior 

work described in the previous chapter, we chose the sum 

rule combination scheme.  The sum rule takes the 

probability outputs of a set of classifiers and adds the 

probability values of each class label.  The class label 

with the maximum summed value is selected as the output 

label. 

In the first set of experiments, one phone was 

assigned to one author.  The output probability logarithms 

for each class label from the phone classifier were added 

to the output probability logarithms of the text 

classifier.  The maximum combined value of each 

classification test was taken as the result.  We conducted 
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20 experiments rotating the author assignment for each 

phone to verify the consistency of results across phone-

author pairings.  The accuracy results for each pairing 

were averaged to obtain the overall accuracy.  Appendix E 

contains the phone-author pairing matrix. 

To mitigate the influence of the differences in 

magnitudes of the text and device probability logarithms on 

the summation result, these values were normalized across 

the individual classes for each classifier output.  The 

normalized output of the signal classifier for a particular 

phone was added to the normalized output of the text 

classifier for its associated author.  The experimentation 

process was repeated on these values.  The pattern of life 

classifier results were included in another set of 

experiments, adding the output values to the text and 

device output values to attain a combined output value. 

Another experiment was conducted to gauge the 

effectiveness of the combined classifier at detecting a 

change of author on a single phone.  Using the same set of 

20 authors and phones as above, the tweet text set was 

modified to simulate a change of author.  We chose two of 

the 20 authors to swap.  Out of the 50 tweet per author 

data set, 10 tweets from each of the two authors were 

labeled as the other author.  The labeling scheme included 

a flag so that we could identify the modified tweets after 

classification.  The modified test set was classified using 

the classifier model trained previously.  None of the 

tweets in the test data had been part of the training 

model.  The results were normalized and added to the 

normalized phone classifier results.  The results of the 
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combined classifier were examined to determine if the 

modified tweets were detected and appropriately classified.  

This process was repeated using the 120 tweet per author 

data set with a training set size of five.  In this case, 

25 tweets from each of the two authors were labeled as the 

other author. 
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IV. RESULTS AND ANALYSIS 

A. TEXT RESULTS 

This section examines the authorship attribution 

results from classification of the Twitter text corpus.  We 

first present the effects of varying the size of the 

character n-gram in the feature set and the type of 

smoothing used.  As 140 characters or less do not contain 

much feature information to make a profile, we experiment 

with combining several individual tweets from one author 

into a “document”, increasing the total word count of the 

experimental unit of analysis by using a set of multiple 

tweets rather than just one tweet, then training the 

classifier and testing with these “documents”.  We 

experiment with classifying data sets consisting of 

different total quantities of tweets per author, combining 

these tweets into documents of varying tweet count.  We 

then test the effect on classifier accuracy of changing the 

number of authors and the total number of tweets per author 

in the data set. 

Analysis of the Twitter text showed that the author 

could be determined by a naïve Bayes classifier at a rate 

significantly better than chance.  Table 3 shows the 

accuracy results averaged over a ten-fold cross validation 

of a multiclass classification of 50 authors using 230 

tweets per author with character 2- through 6-grams as the 

feature set.  Results for LaPlace add-one and Witten-Bell 

smoothing are presented.  These smoothing techniques are  
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explained in more detail in Chapter II, Section F.  As 

expected, the Witten-Bell smoothing performed better than 

the add-one smoothing. 

Table 3.   Classification Accuracy Results for 50 Authors 
With 230 Tweets Per Author 

LaPlace Witten‐Bell
2‐gram 0.369 0.407
3‐gram 0.412 0.495
4‐gram 0.427 0.493
5‐gram 0.420 0.458
6‐gram 0.389 0.415

Smoothing

 
 

In order to compare our results to those published in 

[3], we performed the same analysis using 120 tweets per 

author.  The SCAP method shows better results than our 

classifier.  Table 4 shows our accuracy results compared to 

their results when their @name and #tag removal 

preprocessor is applied. 

Table 4.   Classification Accuracy Results for 50 Authors 
With 120 Tweets Per Author With Comparison to SCAP 

Method 

LaPlace Witten‐Bell SCAP [3]
2‐gram 0.300 0.349 0.357
3‐gram 0.326 0.403 0.527
4‐gram 0.327 0.375 0.544
5‐gram 0.313 0.334 0.536
6‐gram 0.287 0.299 0.512

Smoothing

 
 

The results presented thus far use a single tweet as a 

document for classification purposes.  Combining multiple 
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tweets in a document and using a set of these documents to 

build the feature and count values for the training and 

test inputs to the classifier improves the accuracy results 

significantly.  Table 5 shows the accuracy results of the 

classifier averaged over the ten-fold cross validation for 

50 authors with 230 total tweets per author divided into 

ten documents of 23 tweets each, a value determined 

empirically to provide the best accuracy results as 

described next. 

Table 5.   Classification Accuracy Results for 50 Authors 
With 230 Tweets per Author Combined into Documents 

of Size 23 Tweets 

LaPlace Witten‐Bell
2‐gram 0.915 0.977
3‐gram 0.811 0.996
4‐gram 0.849 0.996
5‐gram 0.913 0.994
6‐gram 0.947 0.992

Smoothing

 
 

Grouping multiple tweets into a document improves the 

accuracy of the classifier significantly.  As the character 

3-gram feature and Witten-Bell smoothing process provided 

the best results in early testing, we continued further 

testing with those parameters fixed.  The next set of tests 

evaluated the effects of document size, in tweets, on 

accuracy.  To complete the 90%:10% train to test split, a 

minimum of ten documents are required for classification.  

We used ten documents with a range of five to 20 tweets per 

document.  Table 6 shows the results of that experiment. 
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Table 6.   Classification Accuracy Results for 50 Authors 
Using 10 Documents With Increasing Number of 

Tweets per Document 

document 
size

total # 
tweets accuracy

5 50 0.554
10 100 0.882
15 150 0.97
20 200 0.99  

 

Fixing the previous experiment at ten documents caused 

the larger document sizes to use a proportionally larger 

total number of tweets for classification.  To determine 

whether the accuracy improvement could be attributed to the 

document size or the total number of tweets in the data 

set, we conducted another experiment in which we set the 

total number of tweets at or near 150.  In a situation 

where the available number of messages per author is 

limited, this distinction is important in designing an 

accurate classification process.  If the use of multi-tweet 

documents enhances classifier accuracy in a fixed corpus 

size, acceptable results may be obtained using fewer tweets 

per author than if tweets are tested individually.  The 

document size was varied from five to 15 tweets per 

document.  The total number of tweets per classification 

run was the multiple of the document size closest to 150.  

Figure 14 shows the results of this experiment.  The 

document size range from one to five tweets was examined 

further, finding the classification accuracy for 50, 100, 

and 150 tweets across that range.  Those results are 

displayed in Figure 15. 
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Figure 14.   Classification Accuracy for 50 Authors Using 
150 Tweets per Author With Increasing Document 

Size 

 
Figure 15.   Classification Accuracy for 50 Authors by 

Document Size and Total Number of Tweets per 
Author 
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The effects of changing the number of tweets per 

author and changing the number of authors were evaluated in 

more detail.  The number of authors in each trial was 

varied from two to 50, selected randomly from the set of 50 

authors.  The number of tweets was varied from 30 to 190 

with a document size of one tweet.  Figures 16 and 17 show 

graphs of the accuracy results over the range examined.  

Improvement in accuracy appears to level off at about 22 

authors. 

 
Figure 16.   Classification Accuracy Results for Various 

Total Tweet Values Per Author With Increasing 
Author Count 
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Figure 17.   Classification Accuracy Results for Various 

Author Counts With Increasing Total Tweet Per 
Author Values 

The classification accuracy curve for increasing 

number of authors in the data set levels out at 20 authors.  

We conducted further experimentation with a set of 20 

authors randomly selected from the 50-author data set.  We 

used total tweet per author values of 30, 50, 100, 120, and 

150.  The document sizes tested ranged from one to 15 

tweets per document.  Figures 18 and 19 show the classifier 
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accuracy results averaged over a ten-fold cross validation 

for 20 authors with varying numbers of tweets per author 

and tweets per document. 

 

 
Figure 18.   Classification Results for 20 Authors With 

Varying Values of Tweets per Author and Tweets per 
Document 
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Figure 19.   Classification Results for 20 Authors With 

More Than 100 Tweets per Author and Varying Tweets 
per Document 

We next investigated if the improvement in 

classification accuracy results generated by combining 

multiple tweets into a document occurred during the 

training or the testing of the classifier.  Using the set 

of 20 authors, we took the models built for 50 tweets per 

author with five tweets per document, 100 tweets per author 

with five and ten tweets per document, and 120 tweets per 

author with five and 12 tweets per document and tested a 

new set of single tweets of the appropriate size on each 

model.  The results of these tests are presented in Table 

7.  The consistency of the accuracy results implies the 

added feature depth of the multi-tweet document generates 

its accuracy benefits during the testing of the classifier 

rather than the training. 
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Table 7.   Classification Accuracy Results for Single Tweet 
Documents Tested on Models Trained on Multi-Tweet 

Documents of the Specified Quantity 

Tweets 
per Author

Document Size 
Trained On

Accuracy

50 1 0.335
50 5 0.335
100 1 0.417
100 5 0.421
100 10 0.4275
120 1 0.4496
120 5 0.4554
120 12 0.4471  

 

This section presented the results of a series of 

classification experiments conducted on a Twitter corpus of 

50 authors.  We found that using character 3-grams as a 

feature set and Witten-Bell smoothing produced the best 

accuracy results.  Classification accuracy improved as the 

number of tweets per author increased, reaching 49.5% 

accuracy at 230 tweets per author, a value based on the 

smallest author data set in the corpus.  Increasing the 

feature depth of the text by combining multiple tweets into 

a document and training and testing the classifier with the 

multi-tweet documents improves classification accuracy 

significantly, with accuracy levels reaching 90% at ten 

tweets per document for 120 and 150 tweets per author and 

99% at 23 tweets per document for 230 tweets per author.  

Confusion matrices and per-author accuracy results for the 

above tests are provided in Appendix B. 
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B. PATTERN OF LIFE RESULTS 

The pattern of life analysis builds a basic 

description of an author’s tweeting habits by examining the 

time of day he sends his messages.  We use the hour of day 

the message is sent as the feature used for classification.  

Like in the text classification process, we try to increase 

the depth of the feature set by combining the send times of 

multiple tweets into one training set and using the 

<feature, count> values of the combined set as the input to 

the classifier. 

Analysis of the hour of day the users tweet showed 

that the author of a tweet could be determined by a naïve 

Bayes classifier at an accuracy rate just slightly better 

than chance.  We used the send hour (GMT) of 120 tweets for 

each author as the time value.  As the send time is 

reported in hour:minute:second format, this serves to bin 

the times into 24 bins, one per hour.  The 120-hour values 

were split into training sets, similar to grouping multiple 

tweets into documents as in the previous section.  We 

experimented with training set sizes ranging from one to 12 

tweet hours per set.  As with the message text, accuracy 

improved when grouping multiple tweet times into a training 

set.  The training sets are input into the naïve Bayes 

classifier and trained and tested using Witten-Bell 

smoothing.  Figure 20 shows the classification accuracy 

results averaged over a ten-fold cross validation for 50 

authors with 120 tweet time values per author grouped into 

training sets ranging in size from one to 12 tweet time 

values per set. 
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Figure 20.   Classification Accuracy for 50 Authors of 

120 Tweet Times per Author With Increasing Number 
of Tweet Times per Training Set 

Compared to the text classification results, time of 

day was not an effective way to discriminate between 

authors.  As the testing focused on English speakers, it is 

possible that many of the users were located in similar 

time zones, and thus maintained similar schedules.  A few 

authors could be classified with very good results, with 

two authors identified at over 60% accuracy over 120 tweets 

with a training set size of three.  Table 8 shows the 

accuracy result for each author for 120 tweets per author 

and training set sizes of three, five, ten, and 12 tweet 

hours per set.  Histograms of the tweet send times for each 

author are presented in Appendix C. 
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Table 8.   Classifier Accuracy Results for Each Author Using 
120 Tweet Times per Author and Increasing Number 

of Tweet Times per Training Set 

Author 3 5 10 12 Author 3 5 10 12
0785 0.0000 0.0833 0.0833 0.2000 5599 0.0500 0.1667 0.4167 0.4000
0806 0.1000 0.1250 0.4167 0.5000 5698 0.3500 0.3750 0.8333 0.6000
1045 0.1500 0.2083 0.2500 0.5000 5742 0.3000 0.3750 0.4167 0.5000
1388 0.0000 0.0833 0.0833 0.2000 6111 0.0250 0.0417 0.0000 0.3000
1734 0.1500 0.1250 0.3333 0.4000 6172 0.1000 0.1250 0.2500 0.2000
1921 0.2000 0.1250 0.3333 0.3000 6705 0.2500 0.2500 0.4167 0.6000
1931 0.2500 0.2500 0.3333 0.4000 6886 0.0250 0.1250 0.2500 0.2000
2241 0.1250 0.3333 0.3333 0.2000 7100 0.0250 0.0000 0.0000 0.0000
2319 0.0250 0.0417 0.0000 0.1000 7106 0.0750 0.2500 0.4167 0.4000
2546 0.1250 0.1250 0.2500 0.3000 7227 0.6250 0.8333 0.9167 1.0000
2622 0.2000 0.3333 0.3333 0.5000 7241 0.1250 0.1667 0.1667 0.0000
2691 0.0000 0.0000 0.0000 0.0000 7457 0.1750 0.2500 0.4167 0.4000
2744 0.1000 0.2917 0.4167 0.5000 7541 0.0250 0.0833 0.0833 0.1000
2753 0.0000 0.0417 0.0000 0.0000 7754 0.0750 0.1667 0.1667 0.4000
3155 0.3750 0.4583 0.7500 0.8000 7958 0.0750 0.0833 0.3333 0.2000
3204 0.0500 0.1250 0.2500 0.2000 8164 0.1000 0.2500 0.5000 0.3000
3281 0.6000 0.3750 0.5833 0.8000 8181 0.0500 0.0833 0.0000 0.3000
3317 0.1250 0.1250 0.1667 0.4000 8487 0.0000 0.0417 0.0000 0.2000
3565 0.1750 0.1667 0.4167 0.4000 8632 0.0250 0.0833 0.1667 0.1000
3693 0.4500 0.4167 0.6667 0.7000 8700 0.0250 0.0833 0.0000 0.0000
3824 0.6250 0.7500 0.9167 0.9000 8832 0.0500 0.1667 0.0833 0.3000
3883 0.0250 0.1667 0.1667 0.3000 8846 0.2250 0.1667 0.5000 0.5000
4045 0.0250 0.0000 0.0833 0.1000 9235 0.1750 0.2083 0.5000 0.5000
4117 0.1000 0.1667 0.2500 0.3000 9417 0.3250 0.2500 0.5000 0.3000
4133 0.2750 0.2083 0.7500 0.7000 9716 0.0250 0.0417 0.0833 0.0000
4431 0.1250 0.1667 0.1667 0.3000 9800 0.0000 0.0833 0.3333 0.1000
5106 0.2000 0.2500 0.3333 0.4000

Tweet Hours per Training Set Tweet Hours per Training Set

 

 

C. SOCIAL NETWORK RESULTS 

Analysis of the social network of the authors as 

determined by the @names referenced in their tweets 

provided excellent accuracy results.  The corpus contained 

a total of 72,888 references to 6,105 unique @names.  The 

least connected author, gauged by the author’s ratio of 
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@names to tweets in the corpus, made 1020 @name references 

in 9004 tweets, while the most connected author made 1570 

@name references in 1174 tweets.  We extracted the @names 

from each author’s tweets and selected 120 from each 

author.  The @names were used as the features input to the 

naïve Bayes classifier using Witten-Bell smoothing.  Like 

the text and time data, we experimented with combining 

multiple @names into a training set to increase the depth 

of the experimental unit.  Accuracy improved when the 

@names drawn from multiple tweets were combined into one 

training set and this training set was used to generate the 

feature and count data.  The averaged results of a ten-fold 

cross validation classification of 120 @names per author 

for 50 authors with a training set size ranging from three 

to 12 @names per set are presented in figure 21. 

 
Figure 21.   Classification Accuracy Results for Social 

Network Analysis of 120 @names per Author With 
Increasing Number of @names per Training Set 
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The very high classification accuracy rate implies 

that the authors randomly chosen for this study did not 

interact with each other or have many common acquaintances.  

In a practical application, this lack of interconnectivity 

may not apply.  A work group or a criminal cell may have a 

large number of common nodes in their social network, 

making this sort of analysis less effective.  For this 

study, the social network proved to be too discriminative, 

and we conducted no further experimentation with @names.  

In future work, we plan to examine the accuracy of the 

social network as a function of the number of 

classification classes, or authors. 

D. PHONE SIGNAL ANALYSIS 

This section presents the results of the 

classification of modulation characteristics collected from 

cell phone signals in an effort to correctly identify the 

specific device transmitting the signal.  We form the three 

measured modulation characteristics (peak phase error, RMS 

phase error, and frequency error) into a feature vector, 

and then use a naïve Bayes classifier to predict the device 

associated with a set of signal feature vectors.  As with 

the previous experiments, we combine multiple signal 

feature vectors into a training set in order to improve 

classification results by increasing the depth of the 

feature context in each training set.  The classifier is 

trained and tested with a variety of total signal vector 

counts per device, and different quantities of signal 

vectors per training set. 
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Analysis of the phone signal modulation 

characteristics showed that devices could be identified by 

the naïve Bayes classifier at an accuracy level well above 

random chance.  Figure 22 shows the accuracy results 

averaged over a ten-fold cross validation for 20 phones 

with a total signal feature vector quantity of 30 – 150 

vectors per device and a training set size of one to five 

vectors per training set. 

 

 
Figure 22.   Classification Accuracy for 20 Devices With 

Varying Vectors per Training Set and Total Vectors 
per Device 

Training set sizes larger than five vectors per set 

were explored using 150 total data vectors.  Figure 23 

shows the results of these experiments for 20 phones.  As 

the training set size increases the total number of 

classification results per phone decreases, giving each 

incorrect classification a larger impact on the accuracy 
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result.  For example, 150 data vectors divided into five 

per training set gives 30 sets for classification.  

Incorrectly classifying one of these documents yields a 

96.7% accuracy result.  When 150 data vectors are grouped 

into training sets of size 15, ten sets are created for 

classification.  Incorrectly classifying one set yields a 

90% accuracy result.  Figure 23 reflects this phenomenon. 

 

 
Figure 23.   Classification Accuracy Results for 20 

Phones With 150 Data Vectors and Varying Document 
Size 

Confusion matrices and accuracy results per phone are 

included in Appendix D.  In future work, we wish to 

investigate which features of the phone signals provide the 

most discriminatory classification power. 

E. COMBINED CLASSIFIERS 

Combining the outputs of the individual classifiers 

improved upon the authorship attribution results of the 



 74

individual text classifier.  Per the sum-rule combination 

scheme discussed in Chapter II, our experimentation added 

the output probability logarithms, averaged over a ten-fold 

cross validation, of the individual phone and text 

classifiers.  The text data sets used in the experiments 

were the classification results from the 20 authors using 

30, 50, 100, 120, and 150 tweets per author and document 

sizes of one to 15 tweets per document.  The phone data 

sets used were the classification results from 20 phones 

using the same number of signal vectors per phone and 

signal vectors per training set as the text data sets.  We 

repeated this process for selected data sets after 

normalizing the output probability logarithms.  Figures 24-

28 show the accuracy results of the individual and combined 

classifiers for the five data sets.  Appendix E contains 

the accuracy results for each author-phone pairing tested. 

 
Figure 24.   Classification Accuracy of Individual and 

Combined Classifiers for 30 Tweets/Signal Vectors 
and Various Training Set Sizes 
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Figure 25.   Classification Accuracy of Individual and 

Combined Classifiers for 50 Tweets/Signal Vectors 
and Various Training Set Sizes 

 
Figure 26.   Classification Accuracy of Individual and 

Combined Classifiers for 100 Tweets/Signal Vectors 
and Various Training Set Sizes 
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Figure 27.   Classification Accuracy of Individual and 

Combined Classifiers for 120 Tweets/Signal Vectors 
and Various Training Set Sizes 

 
Figure 28.   Classification Accuracy of Individual and 

Combined Classifiers for 150 Tweets/Signal Vectors 
and Various Training Set Sizes 
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Normalizing the output probability logarithms, before 

adding them together, results in accuracy values superior 

to either of the individual classifiers.  The probability 

logarithm outputs of the text classifier are orders of 

magnitude smaller than the phone classifier, with bigger 

variance between the label values because of the much 

larger text feature space.  Table 9 shows an example using 

the author 2744 and the phone htc376. 

Table 9.   Comparing Combination of Probability Logarithms 
and Combination of Normalized Probability 

Logarithms 

probability logarithms normalized
htc376 2744 sum htc376 2744 sum

bberry 1045 ‐58.390 ‐1536.188 ‐1594.578 ‐0.0579 ‐0.0498 ‐0.1077
htc371 1388 ‐55.380 ‐1481.225 ‐1536.605 ‐0.0550 ‐0.0480 ‐0.1030
htc373 1734 ‐48.555 ‐1573.074 ‐1621.629 ‐0.0482 ‐0.0510 ‐0.0992
htc374 1921 ‐32.916 ‐1524.800 ‐1557.716 ‐0.0327 ‐0.0494 ‐0.0821
htc375 2546 ‐47.781 ‐1530.894 ‐1578.675 ‐0.0474 ‐0.0496 ‐0.0970
htc376 2744 ‐30.337 ‐1515.917 ‐1546.253 ‐0.0301 ‐0.0491 ‐0.0792
htc601 3155 ‐47.069 ‐1527.684 ‐1574.753 ‐0.0467 ‐0.0495 ‐0.0962
htc_rob 3693 ‐47.608 ‐1603.219 ‐1650.828 ‐0.0472 ‐0.0520 ‐0.0992
iphone4 5599 ‐53.588 ‐1522.475 ‐1576.063 ‐0.0532 ‐0.0493 ‐0.1025
iphone5 5742 ‐51.262 ‐1548.413 ‐1599.674 ‐0.0509 ‐0.0502 ‐0.1011
iphone7 6111 ‐50.704 ‐1567.741 ‐1618.446 ‐0.0503 ‐0.0508 ‐0.1011
n8_594 6886 ‐56.335 ‐1545.237 ‐1601.572 ‐0.0559 ‐0.0501 ‐0.1060
n97_430 7100 ‐54.006 ‐1542.504 ‐1596.511 ‐0.0536 ‐0.0500 ‐0.1036
n97_444 7241 ‐56.450 ‐1570.351 ‐1626.801 ‐0.0560 ‐0.0509 ‐0.1069
n97_618 7754 ‐56.529 ‐1496.549 ‐1553.078 ‐0.0561 ‐0.0485 ‐0.1046
n97_620 7958 ‐54.762 ‐1523.541 ‐1578.304 ‐0.0543 ‐0.0494 ‐0.1037
nok_128 8164 ‐51.402 ‐1600.487 ‐1651.889 ‐0.0510 ‐0.0519 ‐0.1029
nok_e5 8487 ‐60.139 ‐1554.265 ‐1614.404 ‐0.0597 ‐0.0504 ‐0.1101
nok_e62 9417 ‐49.989 ‐1543.362 ‐1593.351 ‐0.0496 ‐0.0500 ‐0.0996
treo 9800 ‐44.480 ‐1546.871 ‐1591.351 ‐0.0441 ‐0.0501 ‐0.0943

Max ‐30.337 ‐1481.225 ‐1536.605 ‐0.0301 ‐0.0480 ‐0.0792  
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The text classifier incorrectly selects author 1388 as 

the most probable class, with a probability logarithm 

output 34.691 orders of magnitude higher than the actual 

class.  The phone classifier correctly selects htc376, but 

its probability logarithm output is only 25.043 orders of 

magnitude more than htc371, the phone associated with 

author 1388.  Thus, the combined classifier selects the 

htc371-1388 pair.  Once the probability logarithms are 

normalized, the relative variation between class labels 

decreases.  The text classifier selection of 1388 is only 

0.0011 orders of magnitude greater than the value for 2744, 

while the value of htc371 is now 0.0249 orders of magnitude 

less than the correct value of htc376.  Thus, the combined 

classifier outputs the correct htc376-2744 pairing based on 

the strength of the phone classifier. 

Another example using the same phone-author pair 

demonstrates how the normalized probability logarithms can 

have a negative effect on the combined classifier accuracy.  

Table 10 shows a set of classifier outputs in which the 

incorrect phone classifier causes the normalized 

probability logarithm combination to make an incorrect 

phone-author pair classification, while the non-normalized 

output combination selected the correct pair. 
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Table 10.   Normalized Probability Logarithm Combination 
Resulting in Incorrect Classification 

probability logarithms normalized
htc376 2744 sum htc376 2744 sum

bberry 1045 ‐61.569 ‐1889.374 ‐1950.943 ‐0.0576 ‐0.0501 ‐0.1077
htc371 1388 ‐59.819 ‐1835.965 ‐1895.783 ‐0.0560 ‐0.0487 ‐0.1047
htc373 1734 ‐57.650 ‐1886.810 ‐1944.460 ‐0.0540 ‐0.0500 ‐0.1040
htc374 1921 ‐34.498 ‐1829.496 ‐1863.993 ‐0.0323 ‐0.0485 ‐0.0808
htc375 2546 ‐50.496 ‐1828.648 ‐1879.145 ‐0.0473 ‐0.0485 ‐0.0958
htc376 2744 ‐36.906 ‐1805.979 ‐1842.885 ‐0.0345 ‐0.0479 ‐0.0824
htc601 3155 ‐55.518 ‐1889.277 ‐1944.794 ‐0.0520 ‐0.0501 ‐0.1021
htc_rob 3693 ‐51.020 ‐2004.238 ‐2055.258 ‐0.0478 ‐0.0531 ‐0.1009
iphone4 5599 ‐55.867 ‐1855.938 ‐1911.805 ‐0.0523 ‐0.0492 ‐0.1015
iphone5 5742 ‐50.603 ‐1922.999 ‐1973.602 ‐0.0474 ‐0.0510 ‐0.0984
iphone7 6111 ‐47.807 ‐1902.916 ‐1950.723 ‐0.0448 ‐0.0505 ‐0.0952
n8_594 6886 ‐57.837 ‐1884.001 ‐1941.838 ‐0.0541 ‐0.0500 ‐0.1041
n97_430 7100 ‐57.482 ‐1879.858 ‐1937.340 ‐0.0538 ‐0.0498 ‐0.1037
n97_444 7241 ‐58.516 ‐1875.332 ‐1933.848 ‐0.0548 ‐0.0497 ‐0.1045
n97_618 7754 ‐59.387 ‐1894.904 ‐1954.291 ‐0.0556 ‐0.0502 ‐0.1058
n97_620 7958 ‐57.586 ‐1898.507 ‐1956.092 ‐0.0539 ‐0.0503 ‐0.1042
nok_128 8164 ‐51.677 ‐1920.182 ‐1971.859 ‐0.0484 ‐0.0509 ‐0.0993
nok_e5 8487 ‐58.015 ‐1891.816 ‐1949.830 ‐0.0543 ‐0.0502 ‐0.1045
nok_e62 9417 ‐54.917 ‐1923.301 ‐1978.218 ‐0.0514 ‐0.0510 ‐0.1024
treo 9800 ‐51.128 ‐1894.848 ‐1945.976 ‐0.0479 ‐0.0502 ‐0.0981

Max ‐34.498 ‐1805.979 ‐1842.885 ‐0.0323 ‐0.0479 ‐0.0808  
 

In this case, the output probability logarithm 

combination provided the correct classification based on 

the strength of the text classifier, but the normalized 

outputs emphasized the phone classifier and produced an 

incorrect classification result.  In future work we wish to 

investigate different classifier combination mechanisms to 

evaluate in more detail the effects of the individual 

classifier inputs on the combined result, and find ways to 

balance these effects on the final result.  
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F. DETECTING AUTHOR CHANGES 

In this section, we test whether the combined 

classification system we have built is able to detect a 

simulated change in user.  For example, a criminal may use 

a cell phone for a period of time, then sell the cell phone 

to someone else and get a new one in order to elude anyone 

who may be tracking the old cell phone.  Our research 

question asks: in the absence of any other knowledge about 

the target user and device, can our classifier detect that 

someone new is using the phone.  We do this by simulating a 

“change” in author in the combination scheme, exchanging 

tweets from two authors in our set of 20 and analyzing if 

the previously trained models of the text and combined 

classifiers can detect and correctly classify the 

mislabeled tweets in the test set. 

Analysis of the combined classifiers, with the 

simulated change in author in two author-phone pairings, 

showed that the classifier combination could detect the 

change in tweet author less than 40% of the time.  Tweets 

from authors 7958 and 9417 were exchanged to simulate a 

change in user on a phone.  Testing was conducted using a 

set of 50 tweets per author with training set sizes of one 

and three tweets per set, and with a set of 120 tweets per 

author with a training set size of five tweets per set.  

The text classifier alone was able to detect the change up 

to 100% of the time, but the classification accuracy of the 

unaltered text, true positives, was also rather low.  

Tables 11-13 show the text-only classification confusion 

matrices for the two affected authors.  The “Original” row 

shows the results for the unaffected tweets.  The “Swapped” 
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row shows the results for the tweets that were exchanged 

between the authors, listed under the labeled author.  The 

true positives are highlighted.  Table 14 lists the 

accuracy rates these matrices display and compares to the 

accuracy over all 20 authors. 

Based on previous testing, adding the phone classifier 

output to the text classifier output should improve the 

true positive rate.  Our analysis shows the true positive 

rate does improve, but the false positive rate also 

increases.  When using the output probability logarithms in 

combination a small difference in accuracy between the 

actual and injected text is noted, with author 7958 more 

distinct than author 9147.  When using the normalized 

output probability logarithms in combination, no difference 

between the actual and injected text can be detected.  

Tables 15–20 are the combined classifier confusion matrices 

for the two affected authors.  Counts are added for all 20 

phone-author pairs tested.  The “Original” row shows the 

results for the unaffected tweets.  The “Swapped” row shows 

the results for the tweets that were exchanged between the 

authors, listed under the labeled author.  The true 

positives are highlighted.  Table 21 shows the accuracy 

results averaged over all 20 author-phone pairings. 
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Table 11.   Confusion Matrix for Text Classifier for Simulated Author Change Using 50 
Tweets per Author With One Tweet per Document With Ten Tweets Exchanged Between 

Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 1 1 0 1 1 1 0 0 2 1 4 2 2 1 1 18 1 2 0 1
9417 2 4 3 1 0 5 4 4 0 4 1 1 0 2 2 3 1 0 3 0

Swapped 7958 1 1 0 2 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0
9417 0 3 0 0 0 0 0 0 0 1 1 0 0 0 0 5 0 0 0 0  

 

Table 12.   Confusion Matrix for Text Classifier for Simulated Author Change Using 50 
Tweets per Author With Three Tweets per Document With Nine Tweets Exchanged 

Between Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 10 0 0 0 0
9417 1 2 0 0 0 1 3 0 0 1 0 0 0 1 0 2 0 0 3 0

Swapped 7958 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0  
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Table 13.   Confusion Matrix for Text Classifier for Simulated Author Change Using 120 
Tweets per Author With Five Tweets per Document With 25 Tweets Exchanged Between 

Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 14 0 0 2 0
9417 0 0 1 0 0 2 0 0 0 0 0 1 0 0 1 4 0 0 10 0

Swapped 7958 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0  

 

Table 14.   Classification Accuracy of Text Classifier for Simulated Author Change – True 
Positives (non-swap) and False Positives (Swap) 

Tweets 120
Train Set 1 3 5
Overall 0.319 0.4912 0.775

7958 non‐swap 0.45 0.7143 0.7368
7958 Swap 0.1 0.3333 0.2

9147 non‐swap 0.075 0.2143 0.5263
9147 Swap 0 0.3333 0

50
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Table 15.   Confusion Matrix for Normalized Combined Classifier for Simulated Author Change 
Using 50 Tweets per Author With One Tweet per Document With Ten Tweets Exchanged 

Between Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 2 0 2 0 1 1 0 1 2 3 5 4 14 15 14 707 13 4 8 4
9417 9 14 8 2 2 2 0 2 0 0 1 1 1 3 6 17 19 20 680 13

Swapped 7958 3 1 1 0 2 0 1 2 0 4 0 1 3 4 2 170 5 0 0 1
9417 0 3 2 1 2 1 0 0 0 1 0 0 6 0 0 6 5 4 164 5  

 

Table 16.   Confusion Matrix for Normalized Combined Classifier for Simulated Author Change 
Using 50 Tweets per Author With Three Tweets per Document With Nine Tweets 

Exchanged Between Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 1 0 0 0 0 0 1 0 0 1 0 1 3 2 6 262 1 1 1 0
9417 2 1 1 1 1 0 0 0 0 1 0 0 2 0 1 5 2 7 256 0

Swapped 7958 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 57 0 0 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 58 0  
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Table 17.   Confusion Matrix for Normalized Combined Classifier for Simulated Author Change 
Using 120 Tweets per Author With Five Tweets per Document With 25 Tweets 

Exchanged Between Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 359 0 0 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 359 0

Swapped 7958 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0  

 

Table 18.   Confusion Matrix for Non-normalized Combined Classifier for Simulated Author 
Change Using 50 Tweets per Author With One Tweet per Document With Ten Tweets 

Exchanged Between Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 17 10 7 4 12 21 0 6 22 18 67 10 42 23 32 458 22 14 4 11
9417 29 97 42 13 12 68 77 57 2 35 17 13 9 38 33 49 5 24 176 4

Swapped 7958 20 24 0 8 15 25 7 20 0 0 0 5 2 1 5 36 2 5 25 0
9417 0 44 0 0 2 0 8 0 0 20 14 7 3 5 1 70 0 14 12 0  
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Table 19.   Confusion Matrix for Non-normalized Combined Classifier for Simulated Author 
Change Using 50 Tweets per Author With Three Tweets per Document With Nine 

Tweets Exchanged Between Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 0 1 0 0 0 0 0 0 0 1 1 4 4 0 0 269 0 0 0 0
9417 13 37 0 2 8 26 48 0 0 4 0 1 1 12 1 29 0 0 98 0

Swapped 7958 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 59 0 0 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 40 0  

 

Table 20.   Confusion Matrix for Non-normalized Combined Classifier for Simulated Author 
Change Using 120 Tweets per Author With Five Tweets per Document With 25 Tweets 

Exchanged Between Authors 

label ‐>
Author 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

Original 7958 0 0 0 0 0 4 0 0 0 0 0 1 0 0 0 355 0 0 0 0
9417 0 0 6 0 0 8 0 0 0 0 0 0 0 0 1 4 0 0 341 0

Swapped 7958 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 81 0 0 13 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 87 0  
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Table 21.   Classification Accuracy of Combined Classifiers for Detecting Simulated Author 
Change – True Positives (non-swap) and False Positives (Swap) 

Tweets 120 120
Train Set 1 3 5 1 3 5
Overall 0.4669 0.7607 0.9700 0.8738 0.9432 0.9966

7958 non‐swap 0.5700 0.9714 0.9842 0.8838 0.9357 0.9974
7958 Swap 0.1900 0.9833 0.6400 0.8500 0.9500 0.9500

9147 non‐swap 0.1900 0.3500 0.9500 0.8500 0.9143 1.0000
9147 Swap 0.0600 0.6667 0.8700 0.8200 0.9667 1.0000

50 50
Normalized OutputsNon‐normalized Outputs
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V. CONCLUSIONS 

A. SUMMARY 

This thesis asked two questions:  can a multi-modal 

naïve Bayes classifier, combining user-specific text 

authorship characteristics and device-specific signal 

characteristics, improve on the accuracy results of a text 

classifier alone — especially for short messages — and can 

such a classifier detect if a phone, normally used by one 

individual, is unexpectedly used by a different individual.  

Our results show that the answer to the first question is 

yes, while the answer to the second is that it is possible, 

but our method requires further refinement to improve 

accuracy.   

In our text classification experiments, classification 

of 120 individual Twitter messages from 50 authors using a 

multiclass naïve Bayes classifier produced 40.3% authorship 

attribution accuracy, less than the 54.4% found by Layton, 

Watters, and Dazeley, using the Source Code Author Profiles 

(SCAP) method [3], the most comparable related work to our 

own.  However, combining multiple tweets to generate a text 

feature vector for input to the classifier improves 

authorship attribution accuracy.  Using a feature vector 

from 23 combined messages produces the best result of 99.6% 

accuracy. 

Analysis of a user’s message communication pattern by 

the time of day they sent tweets did not produce a good 

classifier.  In the best case tested, using the send times 

of 120 tweets per author from 50 authors combined into 12 

tweets per training set, the classification accuracy was 
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35%.  It is possible that by selecting for English speakers 

we obtained a set of authors living in similar time zones.  

The social network analysis, classifying authors by the 

@names mentioned in their tweets, performed extremely well. 

We attained 94% accuracy classifying 120 @names per author 

from 50 authors combined into 3 @names per training set, 

with better accuracy results as training set size 

increased.  The random selection of authors for the study 

likely chose users unrelated to each other, with 

distinctive social networks that enabled high 

classification accuracy, suggesting that the performance of 

such approaches may decrease as the author set size 

increases. 

The device identification portion of the research 

performed very well.  Classification of 120 individual cell 

phone radio signal modulation characteristic vectors for 20 

GSM cell phones resulted in a 90% classification accuracy.  

This compares favorably to the 99% accuracy of Brik et al. 

for modulation characteristics of 802.11 devices [4].  

Combining the signal vectors into training sets of five 

signal vectors per set improved classification accuracy to 

99%. 

Sum-rule combination of the text and phone 

classifiers, adding the probability logarithm outputs of 

the individual classifiers, improves upon the results of 

the text classifier.  The multimodal classifier performed 

better than the text classifier in every experiment as the 

high device identification accuracies influenced the 

combined accuracy result.  For 20 author-phone pairs with 

120 tweets/signal vectors per pair the multimodal 



 91

classifier accuracy was 60%.  When the tweets/signal 

vectors were combined into 5 per training set, the 

multimodal classifier accuracy surpassed 98%.  Predictably, 

summing the classifier outputs produces better accuracy 

results when the individual classifier accuracy results are 

also high. 

The phone user change simulation testing showed that 

the multimodal classifier could not reliably detect if 

tweets from two of the authors were exchanged to simulate a 

different author in a phone-author pairing.  The text 

classifier alone achieved the best results in detecting 

author change, achieving a false positive rate of 0% with a 

true positive rate of 52.6% for one author, and a false 

positive rate of 20% and true positive rate of 73.7% for 

the other.  Those numbers were using 120 tweets per author 

grouped into training sets of five tweets per set.  The 

multimodal classifier results on the same data set were a 

false positive rate of 87% and true positive rate of 95% 

for one author, and a false positive rate of 64% and true 

positive rate of 98.4% for the other.  This indicates that 

the phone classifier results are skewing the multimodal 

classifier to favor the phone detection.  A more accurate 

text classifier may produce better author change detection 

results. 

These results suggest that the classification of the 

user-device binding is feasible.  It could be employed as a 

secondary security layer for a business or government cell 

phone management scheme to detect unauthorized phone use or 

the loss or theft of a phone.  In a law enforcement 

context, this method could help verify the author of SMS 
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messages sent from a suspect’s phone.  With improvement of 

the author change detection method, it may help detect when 

a suspect ceases to use or sells a temporary, or “burner”, 

phone.  Authorship attribution of short messages is a 

difficult problem, but we have shown that a multimodal 

classifier can improve upon the current state of the art. 

B. FUTURE WORK 

This research suggests a number of avenues for further 

research in authorship attribution of short messages. 

1. Social Network Analysis 

The social network analysis conducted here was 

superficial, but showed potentially highly effective 

results.  Future work could build a new Twitter corpus, 

possibly using some of the authors here as a basis.  The 

follow-feed collection of a starting set of selected 

authors would gather tweets to and from users with whom 

they are routinely in contact.  Then repeat this process to 

expand their networks.  A larger set of interconnected 

users could be built through this discover-and-collect 

method.  Once a satisfactorily sized corpus is built, the 

text-based authorship attribution methods used in this 

research could be repeated. 

2. Other Machine Learning Methods 

This research used naïve Bayes classification for 

every data type.  Future research could try other machine 

learning techniques, particularly SVM, to try to improve 

accuracy results.  The binning conducted to discretize 

continuous variables in the phone signal collection and in 
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the time analysis may hurt accuracy results.  SVM is better 

suited for machine learning of continuous variables.  This 

research used a multiclass classifier.  Developing an 

effective one-of-many classifier may have more practical 

application uses when searching for a specific individual 

in an undefined population set. 

Another potential research avenue would be to further 

tune the multimodal classifier, experimenting with 

different classifier combination schemes, and possibly 

using input weighting to mitigate the heavy influence of 

the phone signal results on the multimodal results. 

3. Expanded Phone Signal Analysis 

We used three easily obtained modulation 

characteristics of the cell phone signal to conduct our 

classification testing.  Future research could determine 

which of these three characteristics is the most 

discriminative.  Other signal characteristics such as bit 

error rate and signal ramp time could also be explored. 

An additional research area in the phone signal 

analysis would be to develop a means for measuring these 

signal characteristics with a software defined radio 

system.  The test equipment used in our research is not a 

useful product for a practical application of phone signal 

analysis.  A software defined radio receiver would be a 

more transportable and covert collection asset. 

4. Segmentation Inside Boundaries 

The author change in phone-author pairings experiment 

conducted here could be expanded upon.  Our experiment used 

the technique of combining multiple tweets into a document 
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and classifying the feature vector of that document in 

order to increase the feature space and improve 

classification accuracy.  In the change of author 

experiment, all the tweets in one document belonged to the 

same author.  The author change was simulated by exchanging 

the documents of two authors.  Treating the document as a 

bounded feature space, one could exchange tweets within a 

document.  The goal then would be to detect in which 

document the change of author in the author-phone pairing 

occurs, and where within that document it occurs. 

5. Temporal Posting Aspects 

The tweets used in this research were treated as 

independent slices of text data from an author.  Tweets 

were selected randomly for use.  In reality, tweets, and 

short message communication units in general, have a 

temporal linkage between each other, especially in a 

conversational context.  Future work could examine the 

linkages between sequential tweets, and if those linkages 

could be defined and exploited.  Also of interest is 

whether these linkages can be discriminated by topic or by 

stylistic characteristics. 

C. CONCLUDING REMARKS 

This research explores a holistic view of 

communication as a function of a user and a device 

together.  We explore the user-to-device binding and our 

ability to detect this binding as a pair.  The results of 

this work show that it is easier to detect an author when 

he is bound to a device than it is to detect this author 

alone, with a 50% accuracy improvement in the most 
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disparate case.  Knowing that in a real-world application a 

security professional may have a limited number of text and 

phone signal data points to work with, we tested our method 

on data sets of various sizes, looking to find ways to 

elicit quality accuracy results from minimal data sets.  

Authorship attribution of short messages is a difficult 

problem, but we have shown here that there are ways to 

effectively accomplish it.  The practical applications of 

this research range from law enforcement and intelligence 

gathering to wireless network security. 
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APPENDIX A: MEASURING GSM PHASE AND FREQUENCY 
ERRORS 

Errors in signal modulation generated by a GSM 

transmitter cause degradation in the performance of the 

system.  Small manufacturing variations in the electronics 

fabrication and assembly may cause persistent error in 

signal modulation and transmission.  The ETSI 3GPP 

standards [33] and [34] impose quality standards on the 

allowable error for base stations and mobile stations.  

Manufacturers have developed quality control test 

mechanisms and equipment for their devices to ensure 

compliance with the standards and acceptable performance 

for users in the field.  We use these mechanisms for test 

and identification of the mobile devices used in our 

experiments. 

Once a call is established between the handset and the 

tower, the 8922S samples the uplink signal.  This sampling 

collects the actual phase trajectory of the signal.  In 

GMSK modulation, the signal carries bit-level data by 

affecting changes in carrier frequency, which cause 

corresponding changes in phase state.  A one is represented 

by a carrier frequency change of +67.708 kHz, causing a 

phase state change of +90 degrees in the I/Q plane.  A zero 

is represented by a carrier frequency change of -67.708 

kHz, a phase state change of -90 degrees.  The phase 

trajectory, then, consists of the phase state changes 

representing the series of data bits in the signal [37].  

An error in the phase state change is reflected by a 

deviation from the 90 degree value.  The signal analyzer 

collects the actual phase trajectory transmitted by the 
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handset.  It then demodulates the signal to determine the 

transmitted bit sequence.  From the bit sequence, it 

calculates the ideal phase trajectory.  The phase error is 

the difference between these two trajectories [38].  Figure 

29 is a graphical representation of this process. 

 

 
Figure 29.   GMSK Phase Error Measurement (From [38]) 

The phase error measurement forms the basis of the 

three error values we use in our device identification 

scheme.  The root mean square of the error measurement is 

calculated and reported as the RMS phase error.  The 

largest phase deviation from ideal is reported as the peak 

phase error.  The frequency error is the mean slope of the 
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error line (phase/time) [38].  Figure 30 is a graphical 

representation of these error measurements relative to the 

calculated error line. 

 

 
Figure 30.   GMSK Modulation Errors and Specified Limits 

(From [38]) 

The Agilent 8922S collects the GSM signal from the 

handset, performs the calculations described above over the 

signal bursts, and reports the peak phase error, RMS phase 

error, and frequency error.  These modulation errors 

provide the basis for the device identification 

classification experiments conducted in this thesis. 
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APPENDIX B: ADDITIONAL TEXT CLASSIFICATION DATA 

Table 22.   Confusion Matrix for 30 Tweets per Author With One Tweet per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 4 2 0 3 2 2 1 1 3 1 1 3 2 1 1 2 0 1 0 0
| 1388 0 6 1 2 1 4 2 0 5 1 0 2 0 1 1 1 1 0 0 2
v 1734 0 3 1 0 1 1 3 4 0 1 1 3 1 1 0 5 1 0 3 1

1921 1 2 0 4 1 4 5 0 0 0 3 0 1 2 1 3 0 2 1 0
2546 1 0 0 1 11 4 1 0 6 0 2 0 2 0 0 0 0 0 0 2
2744 0 5 1 2 1 10 0 1 2 1 0 0 4 0 0 1 0 0 2 0
3155 0 3 2 3 3 3 8 0 0 2 0 1 2 2 0 0 0 1 0 0
3693 0 0 0 1 3 1 0 18 3 0 0 0 1 0 1 0 1 1 0 0
5599 0 1 0 0 3 0 0 0 22 0 1 0 1 0 0 0 1 1 0 0
5742 3 1 1 1 1 1 6 2 2 2 0 2 1 0 0 1 0 1 3 2
6111 1 1 0 3 0 0 1 0 6 0 14 0 0 1 0 0 0 0 1 2
6886 1 2 1 0 1 2 2 0 6 0 1 9 2 0 0 1 1 1 0 0
7100 0 2 3 1 2 6 3 1 3 0 0 1 8 0 0 0 0 0 0 0
7241 0 0 1 3 3 3 3 0 3 1 2 0 2 5 0 2 0 0 1 1
7754 0 1 2 1 2 1 1 0 0 0 1 3 0 1 10 1 1 1 2 2
7958 0 0 1 5 1 3 4 0 0 0 1 1 2 0 0 8 1 0 3 0
8164 0 2 0 2 1 1 1 0 0 0 3 1 2 0 0 2 14 0 0 1
8487 1 3 0 1 2 2 3 1 4 0 1 0 1 1 1 1 0 8 0 0
9417 1 2 0 1 1 3 1 1 2 1 0 2 0 0 2 1 1 1 10 0
9800 0 1 0 1 5 3 4 0 1 0 1 3 4 0 0 0 1 1 0 5  
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Table 23.   Confusion Matrix for 30 Tweets per Author With Three Tweets per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 5 0 0 1 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0
| 1388 0 6 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 1 1 1 1 0 4 0 0 0 0 0 0 0 0 1 1 0 0 0

1921 0 2 0 2 0 2 2 0 1 0 0 0 1 0 0 0 0 0 0 0
2546 0 1 0 0 7 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
2744 0 2 0 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 1 0 1 7 0 0 0 0 1 0 0 0 0 0 0 0 0
3693 0 0 0 0 1 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0
5742 0 0 1 0 0 2 4 0 0 1 0 1 0 0 0 0 0 0 0 1
6111 0 1 0 1 0 0 1 0 1 0 6 0 0 0 0 0 0 0 0 0
6886 0 1 0 0 0 2 1 0 1 0 0 4 1 0 0 0 0 0 0 0
7100 0 0 0 1 0 0 3 0 0 0 0 1 5 0 0 0 0 0 0 0
7241 0 0 0 1 3 1 1 0 1 0 0 1 0 2 0 0 0 0 0 0
7754 0 1 0 0 0 0 1 0 0 1 0 2 0 0 3 2 0 0 0 0
7958 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 7 0 0 0 0
8164 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 7 0 0 0
8487 1 1 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 4 0 0
9417 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 6 0
9800 0 0 0 0 1 1 2 0 0 0 1 0 2 0 0 0 0 0 0 3  
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Table 24.   Confusion Matrix for 50 Tweets per Author With One Tweet per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 6 5 1 0 3 6 1 4 3 4 6 1 2 1 1 3 0 2 0 1
| 1388 0 21 2 2 1 7 3 0 4 2 2 1 1 1 1 0 1 1 0 0
v 1734 2 1 4 1 0 6 3 7 0 4 2 5 2 1 2 3 2 0 2 3

1921 1 6 0 15 1 7 2 0 1 1 3 1 2 2 1 3 0 1 2 1
2546 1 3 0 0 15 10 4 0 6 0 1 0 2 1 1 2 0 3 0 1
2744 1 7 2 3 4 20 0 1 3 2 2 1 2 0 0 0 0 0 1 1
3155 1 4 1 3 4 4 24 0 1 1 1 2 1 1 0 1 0 1 0 0
3693 1 0 0 1 5 1 0 27 3 0 1 2 1 0 1 0 1 4 1 1
5599 0 2 0 0 2 0 1 0 37 1 2 1 1 0 0 0 0 3 0 0
5742 7 5 0 0 3 4 4 3 1 7 0 3 4 1 3 1 0 0 2 2
6111 0 4 0 1 3 5 2 0 4 0 25 1 1 1 0 1 0 1 0 1
6886 2 8 0 2 2 4 0 1 2 1 2 13 1 0 3 7 0 0 1 1
7100 1 3 1 1 6 6 3 0 4 0 1 2 18 1 1 2 0 0 0 0
7241 0 5 0 1 7 3 5 0 4 1 1 2 5 10 1 1 1 1 1 1
7754 0 3 2 1 2 6 1 1 0 3 0 6 2 0 12 1 0 0 7 3
7958 1 3 1 1 0 3 3 0 0 2 3 4 3 3 0 22 0 0 1 0
8164 1 4 1 1 0 2 1 0 2 2 4 1 3 2 3 0 18 1 2 2
8487 3 1 0 0 2 5 5 1 9 0 2 1 1 0 0 0 0 19 0 1
9417 2 5 3 1 2 2 2 2 1 5 0 3 2 0 4 2 1 0 13 0
9800 1 3 0 3 6 5 6 0 3 2 3 1 4 0 1 1 0 1 1 9  
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Table 25.   Confusion Matrix for 50 Tweets per Author With Three Tweets per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 5 1 1 0 0 1 2 0 1 3 0 0 0 0 0 2 0 0 1 0
| 1388 0 14 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 1 1 0 0 4 2 0 0 2 0 2 0 0 2 1 1 0 1 0

1921 0 4 0 5 1 4 2 0 0 0 0 0 0 0 0 1 0 0 0 0
2546 0 2 0 0 11 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0
2744 0 3 0 0 2 10 1 0 0 0 0 0 1 0 0 0 0 0 0 0
3155 0 2 0 1 0 1 13 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 2 0 0 11 1 0 0 1 0 0 0 0 0 2 0 0
5599 0 0 0 0 1 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0
5742 1 1 1 1 0 2 1 0 0 5 0 2 1 0 1 0 0 0 0 1
6111 0 0 0 3 2 2 1 0 0 0 8 0 0 1 0 0 0 0 0 0
6886 0 4 0 0 1 2 0 0 1 0 0 5 1 0 0 2 0 0 1 0
7100 0 0 0 0 3 3 1 0 1 0 0 0 9 0 0 0 0 0 0 0
7241 0 0 0 1 4 2 1 0 1 0 0 1 0 6 0 0 0 0 0 1
7754 2 1 1 0 2 1 1 0 0 2 0 2 0 0 1 2 0 0 2 0
7958 2 1 0 1 0 0 0 0 0 0 0 3 0 1 0 9 0 0 0 0
8164 0 2 0 2 0 0 0 0 1 0 1 1 1 0 1 0 8 0 0 0
8487 0 1 0 0 3 0 1 0 0 1 0 0 0 0 0 1 0 10 0 0
9417 0 1 0 1 1 2 0 0 0 0 0 2 1 0 1 1 0 0 7 0
9800 0 0 0 1 3 1 2 0 0 1 2 1 2 0 0 0 0 0 0 4  
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Table 26.   Confusion Matrix for 50 Tweets per Author With Five Tweets per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 5 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
| 1388 0 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 0 0 0 0 5 1 0 0 1 0 0 0 0 1 1 0 0 1 0

1921 0 2 0 3 0 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0
2546 0 0 0 0 9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2744 0 1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 1 0 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 1 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0
5742 0 1 2 1 0 1 3 0 0 2 0 0 0 0 0 0 0 0 0 0
6111 0 1 0 0 0 1 0 0 0 0 8 0 0 0 0 0 0 0 0 0
6886 0 3 0 0 2 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0
7100 0 0 0 0 2 1 0 0 0 0 0 0 7 0 0 0 0 0 0 0
7241 0 1 0 1 2 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0
7754 0 1 0 0 1 2 0 0 0 1 0 2 0 0 2 1 0 0 0 0
7958 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 7 0 0 0 0
8164 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 0 0 0
8487 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 7 0 0
9417 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 5 0
9800 0 0 0 1 2 0 0 0 0 0 0 2 1 0 0 0 0 0 0 4  
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Table 27.   Confusion Matrix for 120 Tweets per Author With One Tweet per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 34 5 1 2 7 15 3 10 7 5 5 3 7 2 2 5 0 2 2 3
| 1388 0 48 4 6 1 17 10 2 9 3 2 0 6 2 2 2 1 0 2 3
v 1734 1 9 22 3 4 12 5 14 1 6 1 9 5 3 2 4 4 0 12 3

1921 1 9 1 61 6 14 7 0 0 1 5 1 1 3 2 4 0 0 2 2
2546 1 5 1 2 58 13 7 0 14 0 2 2 5 1 1 1 0 1 3 3
2744 1 7 2 2 6 74 3 1 8 3 3 1 1 1 1 0 1 2 1 2
3155 1 9 2 8 11 12 59 1 0 2 3 0 2 3 3 1 0 0 0 3
3693 4 0 2 0 6 3 2 73 19 0 1 1 2 0 0 0 1 1 0 5
5599 1 2 0 0 8 5 1 0 94 0 3 1 1 1 0 0 0 2 0 1
5742 5 4 9 5 1 14 6 11 2 39 2 3 2 0 3 5 0 1 6 2
6111 0 8 0 5 10 12 4 1 4 2 65 3 0 1 0 0 0 1 0 4
6886 3 5 1 4 4 9 0 4 4 2 4 59 5 2 2 6 0 2 2 2
7100 0 7 2 3 5 15 6 0 5 1 0 1 64 2 1 2 1 5 0 0
7241 1 7 1 11 8 12 5 0 4 3 2 3 9 42 3 2 0 3 3 1
7754 1 8 2 4 3 13 5 4 3 6 1 8 2 3 45 4 1 0 6 1
7958 2 6 2 7 2 5 3 4 2 3 2 7 4 4 3 57 1 3 1 2
8164 3 3 3 4 5 9 4 3 4 3 4 3 1 2 4 1 53 3 5 3
8487 4 0 1 4 12 12 2 3 10 2 4 1 2 2 0 1 1 53 2 4
9417 2 9 8 4 2 12 5 11 1 4 3 3 0 3 6 6 0 0 41 0
9800 2 4 2 4 13 8 10 0 6 0 7 8 6 3 1 2 0 4 2 38  
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Table 28.   Confusion Matrix for 120 Tweets per Author With Three Tweets per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 21 3 0 1 1 3 0 3 1 0 0 0 1 0 0 3 0 1 2 0
| 1388 0 31 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 1
v 1734 0 3 9 0 0 6 2 1 0 5 0 1 0 0 1 4 1 0 7 0

1921 1 0 0 32 0 4 1 0 0 1 0 0 0 0 0 1 0 0 0 0
2546 0 0 0 0 30 5 0 0 1 0 1 0 0 0 0 1 0 1 0 1
2744 0 2 0 0 3 34 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 2 0 1 2 1 32 0 0 0 0 0 0 0 1 0 0 0 1 0
3693 1 0 0 0 1 1 0 31 5 0 0 0 0 0 0 1 0 0 0 0
5599 0 0 0 0 1 1 0 0 38 0 0 0 0 0 0 0 0 0 0 0
5742 0 2 2 2 0 8 2 1 0 18 0 1 2 0 1 0 0 0 1 0
6111 0 0 0 0 1 4 1 0 0 0 34 0 0 0 0 0 0 0 0 0
6886 0 0 0 0 1 6 0 0 0 0 1 29 1 0 0 1 0 1 0 0
7100 0 1 0 0 1 4 0 0 0 0 0 0 33 0 0 1 0 0 0 0
7241 0 1 0 3 2 7 1 0 1 0 0 0 1 23 0 0 0 0 1 0
7754 0 3 0 1 0 7 1 0 0 2 0 2 0 0 23 0 0 0 1 0
7958 1 1 0 1 0 2 0 0 0 2 0 0 2 0 0 29 0 0 2 0
8164 0 1 0 1 2 1 0 1 0 0 1 1 2 0 0 0 30 0 0 0
8487 0 0 0 1 4 2 0 0 0 0 1 0 1 1 0 0 0 29 0 1
9417 0 1 1 1 1 5 1 0 0 2 1 0 0 0 1 1 0 0 25 0
9800 0 2 0 4 1 4 4 0 0 0 1 2 1 0 0 0 0 2 0 19  



 108

Table 29.   Confusion Matrix for 120 Tweets per Author With Five Tweets per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 14 2 0 0 1 3 0 0 1 0 0 0 0 0 0 3 0 0 0 0
| 1388 0 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 2 7 0 0 6 1 0 0 1 0 1 0 0 1 3 0 0 2 0

1921 0 1 0 21 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2546 0 0 0 0 22 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
2744 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 0 0 1 23 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 1 0 0 22 1 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0
5742 0 1 0 0 0 6 1 0 0 15 0 0 0 0 0 0 0 0 1 0
6111 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0
6886 2 1 0 0 0 0 0 0 0 0 0 20 0 0 0 1 0 0 0 0
7100 0 0 0 0 0 3 0 0 0 0 0 0 21 0 0 0 0 0 0 0
7241 0 0 0 3 4 3 0 0 1 0 0 0 0 13 0 0 0 0 0 0
7754 0 1 0 0 1 5 0 0 0 1 0 0 0 0 15 1 0 0 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 22 0 0 1 0
8164 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 21 0 0 0
8487 0 0 0 1 3 0 0 0 0 0 1 0 0 0 0 0 0 19 0 0
9417 0 1 1 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 18 0
9800 0 0 0 0 1 0 1 0 0 0 0 0 2 0 0 1 0 0 0 19  
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Table 30.   Confusion Matrix for 150 Tweets per Author With One Tweet per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 45 12 2 4 7 12 1 11 6 7 7 2 7 2 3 11 1 3 1 6
| 1388 2 68 3 7 7 21 11 2 3 5 2 2 5 1 3 2 0 2 1 3
v 1734 2 17 30 9 5 16 7 14 0 9 4 5 7 1 3 7 2 0 8 4

1921 1 9 1 79 9 13 8 0 0 4 2 3 2 6 1 3 2 2 4 1
2546 1 4 1 3 77 13 7 0 21 0 5 2 6 4 0 0 0 2 1 3
2744 0 10 2 5 9 87 7 1 9 2 4 1 6 1 0 1 0 2 0 3
3155 1 10 4 9 9 12 70 1 0 2 3 2 4 8 2 2 0 2 0 9
3693 3 2 1 2 5 1 2 91 23 0 2 4 1 1 0 0 0 3 3 6
5599 1 2 0 0 16 3 0 0 113 0 5 0 2 1 0 1 0 2 1 3
5742 5 12 5 6 1 20 6 11 2 50 1 5 3 0 7 7 1 0 6 2
6111 0 8 0 6 10 13 3 1 4 0 91 4 0 1 0 1 1 2 0 5
6886 3 10 1 7 4 8 1 4 2 2 2 76 8 4 1 8 2 1 4 2
7100 0 5 3 4 8 12 4 1 6 1 3 2 92 1 1 3 0 4 0 0
7241 3 4 1 9 17 17 8 0 9 1 0 2 7 54 2 4 1 3 1 7
7754 2 7 6 2 5 16 6 6 2 8 1 9 2 4 53 8 2 1 7 3
7958 3 7 2 7 3 7 3 5 3 1 6 7 3 2 2 81 1 2 3 2
8164 1 9 4 6 6 5 3 7 5 2 5 1 3 3 4 1 76 4 4 1
8487 3 3 0 3 16 14 1 6 13 1 4 3 5 3 0 1 0 68 2 4
9417 2 15 5 5 4 11 5 16 1 3 4 6 0 0 10 9 1 2 48 3
9800 2 5 3 6 12 14 15 0 7 0 7 8 7 5 1 1 0 4 1 52  
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Table 31.   Confusion Matrix for 150 Tweets per Author With Three Tweets per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 25 2 0 1 2 4 0 3 2 4 1 0 1 0 0 5 0 0 0 0
| 1388 0 38 0 1 0 7 3 0 0 1 0 0 0 0 0 0 0 0 0 0
v 1734 1 8 11 0 0 6 1 1 0 8 0 0 1 0 0 3 1 0 9 0

1921 0 3 0 41 1 3 0 0 0 1 0 0 0 0 0 1 0 0 0 0
2546 0 0 0 0 43 3 0 0 1 0 0 0 0 1 0 1 0 0 0 1
2744 0 1 0 0 2 46 0 0 0 0 0 0 0 0 0 0 0 1 0 0
3155 0 0 0 2 2 1 42 0 0 0 1 0 0 0 1 0 0 0 1 0
3693 0 0 0 0 3 0 0 40 5 0 0 0 0 0 0 0 0 0 1 1
5599 0 0 0 0 3 1 0 0 46 0 0 0 0 0 0 0 0 0 0 0
5742 1 3 2 2 0 8 2 2 1 24 0 0 0 0 2 2 0 0 1 0
6111 0 2 0 1 3 2 0 0 0 0 42 0 0 0 0 0 0 0 0 0
6886 0 2 0 0 0 3 0 0 0 0 0 41 2 1 0 0 0 0 1 0
7100 0 0 0 0 2 3 1 0 0 0 0 0 44 0 0 0 0 0 0 0
7241 0 2 0 6 5 2 2 0 1 0 0 1 1 29 0 0 1 0 0 0
7754 0 1 0 2 2 3 1 1 0 3 0 2 0 0 31 1 0 0 3 0
7958 3 0 0 0 0 2 0 0 0 0 0 0 2 0 0 42 0 0 1 0
8164 0 4 0 1 2 0 0 1 0 0 3 1 1 0 0 1 36 0 0 0
8487 1 0 0 0 6 1 1 0 0 0 2 0 1 0 0 0 0 36 1 1
9417 0 4 1 1 0 6 1 1 0 1 1 0 1 0 1 1 0 0 31 0
9800 0 2 0 1 2 2 3 0 0 0 0 2 2 0 0 0 0 0 0 36  
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Table 32.   Confusion Matrix for 150 Tweets per Author With Five Tweets per Document 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 20 2 0 0 0 2 0 0 0 1 0 0 2 0 0 3 0 0 0 0
| 1388 0 26 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 5 8 0 0 5 1 0 0 3 0 1 0 0 0 1 0 0 6 0

1921 0 0 0 29 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2546 0 0 0 0 29 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
2744 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 0 1 0 28 0 0 0 0 0 0 1 0 0 0 0 0 0
3693 0 0 0 0 0 0 0 28 2 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0
5742 0 0 0 1 0 7 0 0 0 20 0 0 0 0 1 0 0 0 1 0
6111 0 0 0 0 1 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0
6886 1 0 0 1 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0
7100 0 0 0 0 0 3 0 0 0 0 0 0 27 0 0 0 0 0 0 0
7241 0 1 0 2 5 0 1 0 0 0 0 0 1 20 0 0 0 0 0 0
7754 0 1 1 0 0 5 0 0 0 1 0 0 0 0 19 1 0 0 2 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 1 0
8164 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 26 0 0 0
8487 0 0 0 0 4 1 0 0 0 0 2 0 0 0 0 0 0 23 0 0
9417 0 2 0 0 0 3 0 0 0 0 0 1 0 0 1 0 0 0 23 0
9800 0 0 0 0 2 1 1 0 0 0 0 0 1 0 0 0 0 0 0 25  
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Table 33.   Per Author Accuracy Rates for Various Total 
Tweets per Author and Tweets per Document 

# Tweets
Tweets per 
Document 1 3 1 3 5 1 3 5 1 3 5

1045 0.133 0.5 0.12 0.294 0.5 0.283 0.525 0.583 0.3 0.5 0.667
1388 0.2 0.6 0.42 0.824 0.9 0.4 0.775 0.958 0.453 0.76 0.867
1734 0.033 0.1 0.08 0.059 0 0.183 0.225 0.292 0.2 0.22 0.267
1921 0.133 0.2 0.3 0.294 0.3 0.508 0.8 0.875 0.527 0.82 0.967
2546 0.367 0.7 0.3 0.647 0.9 0.483 0.75 0.917 0.513 0.86 0.967
2744 0.333 0.6 0.4 0.588 0.9 0.617 0.85 1 0.58 0.92 1
3155 0.267 0.7 0.48 0.765 0.8 0.492 0.8 0.958 0.467 0.84 0.933
3693 0.6 0.7 0.54 0.647 0.8 0.608 0.775 0.917 0.607 0.8 0.933
5599 0.733 0.9 0.74 0.941 1 0.783 0.95 1 0.753 0.92 1
5742 0.067 0.1 0.14 0.294 0.2 0.325 0.45 0.625 0.333 0.48 0.667
6111 0.467 0.6 0.5 0.471 0.8 0.542 0.85 1 0.607 0.84 0.967
6886 0.3 0.4 0.26 0.294 0.4 0.492 0.725 0.833 0.507 0.82 0.933
7100 0.267 0.5 0.36 0.529 0.7 0.533 0.825 0.875 0.613 0.88 0.9
7241 0.167 0.2 0.2 0.353 0.4 0.35 0.575 0.542 0.36 0.58 0.667
7754 0.333 0.3 0.24 0.059 0.2 0.375 0.575 0.625 0.353 0.62 0.633
7958 0.267 0.7 0.44 0.529 0.7 0.475 0.725 0.917 0.54 0.84 0.967
8164 0.467 0.7 0.36 0.471 0.7 0.442 0.75 0.875 0.507 0.72 0.867
8487 0.267 0.4 0.38 0.588 0.7 0.442 0.725 0.792 0.453 0.72 0.767
9417 0.333 0.6 0.26 0.412 0.5 0.342 0.625 0.75 0.32 0.62 0.767
9800 0.167 0.3 0.18 0.235 0.4 0.317 0.475 0.792 0.347 0.72 0.833

30 50 120 150
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APPENDIX C: TWEET SEND TIME ADDITIONAL DATA 

 
Figure 31.   Author 1045 Tweet Send Time Histogram 

 
Figure 32.   Author 1388 Tweet Send Time Histogram 
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Figure 33.   Author 1734 Tweet Send Time Histogram 

 

 
Figure 34.   Author 1921 Tweet Send Time Histogram 
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Figure 35.   Author 2546 Tweet Send Time Histogram 

 

 
Figure 36.   Author 2744 Tweet Send Time Histogram 
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Figure 37.   Author 3155 Tweet Send Time Histogram 

 

 
Figure 38.   Author 3693 Tweet Send Time Histogram 
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Figure 39.   Author 5599 Tweet Send Time Histogram 

 

 
Figure 40.   Author 5742 Tweet Send Time Histogram 
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Figure 41.   Author 6111 Tweet Send Time Histogram 

 

 
Figure 42.   Author 6886 Tweet Send Time Histogram 
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Figure 43.   Author 7100 Tweet Send Time Histogram 

 

 
Figure 44.   Author 7241 Tweet Send Time Histogram 
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Figure 45.   Author 7754 Tweet Send Time Histogram 

 

 
Figure 46.   Author 7958 Tweet Send Time Histogram 
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Figure 47.   Author 8164 Tweet Send Time Histogram 

 

 
Figure 48.   Author 8487 Tweet Send Time Histogram 
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Figure 49.   Author 9417 Tweet Send Time Histogram 

 

 
Figure 50.   Author 9800 Tweet Send Time Histogram 
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APPENDIX D: PHONE CLASSIFIER ADDITIONAL DATA 

Table 34.   Confusion Matrix for 30 Signal Vectors per Phone With One Signal Vector per 
Training Set 

 

label
truth bberry htc371 htc373 htc374 htc375 htc376 htc601 htc_rob iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

bberry 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
htc371 0 27 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
htc373 0 1 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
htc374 0 0 0 25 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0
htc375 0 0 0 0 28 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
htc376 1 0 1 5 0 22 0 0 0 0 0 0 0 0 0 0 0 0 1 0
htc601 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 0 0 0 0 0 0 28 0 0 1 0 0 0 0 0 0 0 1 0
iphone4 1 0 0 0 0 0 0 0 22 3 1 3 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 6 21 3 0 0 0 0 0 0 0 0 0
iphone7 1 0 0 0 0 0 1 2 3 6 9 0 0 3 2 0 1 2 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 2 27 0 0 1 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 2 1 24 0 1 2 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 1 0 0 0 26 0 0 0 3 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 1 6 2 0 21 0 0 0 0
nok_128 4 2 0 0 0 0 0 0 0 0 0 1 1 5 4 1 11 1 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 27 0 0
nok_e62 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 26 0
treo 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29
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Table 35.   Confusion Matrix for 30 Signal Vectors per Phone With Two Signal Vectors per 
Training Set 

label
bberry htc371 htc373 htc374 htc375 htc376 htc601 htc_rob iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 11 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
htc373 0 2 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 11 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 3 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 1 0
iphone4 0 0 0 0 0 0 0 0 11 2 2 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 1 11 2 0 0 0 0 0 1 0 0 0
iphone7 0 0 0 0 0 0 0 2 2 6 4 0 0 1 0 0 0 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 1 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 12 0 0 0 0
nok_128 0 1 0 0 0 0 0 0 0 0 0 1 0 3 4 1 4 1 0 0
nok_e5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 12 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15  
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Table 36.   Confusion Matrix for 30 Signal Vectors per Phone With Three Signal Vectors per 
Training Set 

label
bberry htc371 htc373 htc374 htc375 htc376 htc601 htc_rob iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 1 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 7 1 1 1 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 1 7 2 0 0 0 0 0 0 0 0 0
iphone7 0 0 0 0 0 0 0 1 0 5 2 0 0 1 0 0 0 1 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 1 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 1 0 9 0 0 0 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 7 0 0 0 0
nok_128 1 0 0 0 0 0 0 0 0 0 1 0 0 2 1 1 4 0 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 8 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10  
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Table 37.   Confusion Matrix for 50 Signal Vectors per Phone With One Signal Vector per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 49 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 47 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
htc371 0 0 46 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
htc373 0 0 0 49 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 43 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0
htc375 0 1 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 1 0 1 1 14 0 30 0 0 0 0 0 0 0 0 0 0 0 2 1
htc601 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 2 43 4 0 1 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 8 36 6 0 0 0 0 0 0 0 0 0
iphone7 1 1 0 0 0 1 0 0 4 13 23 0 0 2 1 0 2 2 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 1 2 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 1 47 0 0 2 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 1 1 45 0 1 2 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 1 0 43 0 1 5 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 1 7 1 0 41 0 0 0 0
nok_128 5 0 1 0 0 0 0 0 0 0 4 1 2 11 5 3 16 2 0 0
nok_e5 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 45 0 0
nok_e62 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 46 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50  
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Table 38.   Confusion Matrix for 50 Signal Vectors per Phone With Two Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 24 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
htc_rob 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 1 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 23 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 24 0 0 1 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 4 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 22 3 0 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 2 20 3 0 0 0 0 0 0 0 0 0
iphone7 0 1 0 0 0 0 0 0 1 9 9 0 0 1 0 0 3 1 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 24 1 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 1 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 23 0 0 0 0
nok_128 1 0 0 0 0 0 0 0 0 0 1 0 0 2 4 1 14 2 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 23 0 0
nok_e62 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25  
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Table 39.   Confusion Matrix for 50 Signal Vectors per Phone With Three Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
htc_rob 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
htc371 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 4 0 12 0 0 0 0 0 0 0 0 0 0 0 1 0
htc601 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 15 1 1 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 1 15 1 0 0 0 0 0 0 0 0 0
iphone7 0 0 0 0 0 0 0 0 0 7 9 0 0 1 0 0 0 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 15 0 0 0 0
nok_128 1 0 0 0 0 0 0 0 0 1 2 0 0 1 1 0 10 1 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0
nok_e62 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17  
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Table 40.   Confusion Matrix for 50 Signal Vectors per Phone With Four Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 2 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 11 1 1 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 1 10 2 0 0 0 0 0 0 0 0 0
iphone7 0 0 0 0 0 0 0 0 0 5 7 0 0 1 0 0 0 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0
nok_128 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 10 0 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0
nok_e62 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13  
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Table 41.   Confusion Matrix for 50 Signal Vectors per Phone With Five Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 8 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 1 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 1 8 1 0 0 0 0 0 0 0 0 0
iphone7 0 0 0 0 0 0 0 0 0 3 6 0 0 0 0 0 1 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 1 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0
nok_128 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 7 0 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10  
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Table 42.   Confusion Matrix for 100 Signal Vectors per Phone With One Signal Vector per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 96 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
htc_rob 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 1 0 94 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 1 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 89 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0
htc375 0 1 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 1 1 0 0 29 0 67 0 0 0 0 0 0 0 0 0 0 0 2 0
htc601 0 0 0 0 1 0 0 97 0 0 0 0 0 0 0 0 0 2 0 0
iphone4 0 0 0 0 0 0 0 1 84 12 0 0 0 0 0 0 3 0 0 0
iphone5 0 0 0 0 0 0 0 0 7 83 10 0 0 0 0 0 0 0 0 0
iphone7 1 0 0 0 0 1 0 2 8 20 59 0 0 2 0 0 4 3 0 0
n8_594 0 0 0 0 0 0 0 1 0 0 0 98 1 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 2 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 1 91 0 0 8 0 0 0
n97_618 0 0 1 0 0 0 0 0 0 0 0 0 1 0 89 0 1 8 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 95 0 0 0 0
nok_128 13 0 1 0 0 0 0 0 0 0 4 0 2 20 4 1 51 4 0 0
nok_e5 0 0 0 0 0 0 0 4 0 0 0 0 0 0 3 0 0 93 0 0
nok_e62 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 96 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100  
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Table 43.   Confusion Matrix for 100 Signal Vectors per Phone With Two Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 49 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 49 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 5 0 44 0 0 0 0 0 0 0 0 0 0 0 1 0
htc601 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 49 1 0 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 3 44 3 0 0 0 0 0 0 0 0 0
iphone7 1 0 0 0 0 0 0 0 1 6 41 0 0 1 0 0 0 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0
nok_128 4 0 0 0 0 0 0 0 0 0 1 0 0 4 1 0 40 0 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50  
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Table 44.   Confusion Matrix for 100 Signal Vectors per Phone With Three Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 3 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 33 1 0 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 0 33 1 0 0 0 0 0 0 0 0 0
iphone7 0 0 0 0 0 0 0 0 0 4 30 0 0 0 0 0 0 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0
nok_128 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 29 0 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34  
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Table 45.   Confusion Matrix for 120 Signal Vectors per Phone With One Signal Vector per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
htc_rob 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 1 0 113 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
htc373 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 111 0 8 0 0 0 0 0 0 0 0 0 0 0 1 0
htc375 0 1 0 0 0 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 1 0 0 0 35 1 81 0 0 0 0 0 0 0 0 0 0 0 2 0
htc601 0 0 0 0 1 0 0 119 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 1 110 8 1 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 11 96 13 0 0 0 0 0 0 0 0 0
iphone7 1 2 0 0 0 0 0 2 6 25 70 0 0 4 2 0 6 2 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 119 1 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 113 0 0 7 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 1 1 112 0 0 6 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 1 0 0 0 109 0 1 9 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 7 1 0 112 0 0 0 0
nok_128 17 0 0 0 0 0 0 0 0 0 4 0 1 18 9 1 66 4 0 0
nok_e5 0 0 0 0 0 0 1 2 0 0 0 0 0 0 2 0 0 115 0 0
nok_e62 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 118 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120  
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Table 46.   Confusion Matrix for 120 Signal Vectors per Phone With Two Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 59 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 8 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 58 2 0 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 2 53 5 0 0 0 0 0 0 0 0 0
iphone7 0 0 0 0 0 0 0 0 2 12 45 0 0 0 0 0 1 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0
nok_128 4 0 0 0 0 0 0 0 0 0 1 0 0 8 1 0 45 1 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60  
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Table 47.   Confusion Matrix for 120 Signal Vectors per Phone With Three Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 4 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 39 1 0 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 0 39 1 0 0 0 0 0 0 0 0 0
iphone7 0 0 0 0 0 0 0 0 0 7 33 0 0 0 0 0 0 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0
nok_128 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 36 0 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40  
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Table 48.   Confusion Matrix for 150 Signal Vectors per Phone With One Signal Vector per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 147 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
htc_rob 0 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 1 0 147 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
htc373 0 0 1 148 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 140 0 7 0 0 0 0 0 0 0 0 0 0 0 3 0
htc375 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 1 0 1 49 1 98 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 1 0 0 148 0 0 0 0 0 0 0 0 1 0 0 0
iphone4 0 0 0 0 0 0 0 1 139 8 2 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 16 117 17 0 0 0 0 0 0 0 0 0
iphone7 0 3 0 0 0 0 0 1 6 31 91 0 0 3 3 0 6 5 1 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 147 0 0 3 0 0 0 0
n97_444 0 0 1 0 0 0 0 0 0 0 0 1 0 142 0 0 6 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142 0 1 7 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 140 0 0 0 0
nok_128 15 0 0 0 0 0 0 1 0 0 7 1 0 17 7 0 100 2 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 146 0 0
nok_e62 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 145 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150  
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Table 49.   Confusion Matrix for 150 Signal Vectors per Phone With Two Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
htc_rob 1 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 74 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 70 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 11 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 71 3 1 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 4 62 9 0 0 0 0 0 0 0 0 0
iphone7 0 1 0 0 0 0 0 0 1 17 55 0 0 0 1 0 0 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 73 0 0 2 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 0 1 2 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 71 0 0 0 0
nok_128 4 0 0 0 0 0 0 0 0 0 3 0 0 9 4 0 54 1 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 74 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75  
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Table 50.   Confusion Matrix for 150 Signal Vectors per Phone With Three Signal Vectors per 
Training Set 

label
bberry htc_rob htc371 htc373 htc374 htc375 htc376 htc601 iphone4 iphone5 iphone7 n8_594 n97_430 n97_444 n97_618 n97_620 nok_128 nok_e5 nok_e62 treo

truth bberry 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc_rob 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc371 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc373 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc374 0 0 0 0 48 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
htc375 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
htc376 0 0 0 0 6 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0
htc601 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
iphone4 0 0 0 0 0 0 0 0 46 2 2 0 0 0 0 0 0 0 0 0
iphone5 0 0 0 0 0 0 0 0 1 46 3 0 0 0 0 0 0 0 0 0
iphone7 0 0 0 0 0 0 0 0 0 10 40 0 0 0 0 0 0 0 0 0
n8_594 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0
n97_430 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0
n97_444 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0 1 0 0 0
n97_618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 1 1 0 0
n97_620 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 48 0 0 0 0
nok_128 2 0 0 0 0 0 0 0 0 0 3 0 0 8 2 0 35 0 0 0
nok_e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 49 0 0
nok_e62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
treo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50  
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Table 51.   Per Phone Accuracy Rates for Various Total Signal Vectors per Phone and Vectors 
per Training Set 

# Vectors
Training Set 1 2 3 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

bberry 0.967 1.000 1.000 0.980 0.960 0.941 1.000 1.000 0.960 0.980 1.000 1.000 1.000 0.975 1.000 1.000 1.000 1.000 0.980 0.987 1.000 0.947 1.000
htc371 0.900 0.733 1.000 0.940 1.000 0.941 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000
htc373 0.933 0.867 0.800 0.920 1.000 1.000 1.000 1.000 0.940 1.000 1.000 1.000 1.000 0.942 1.000 1.000 1.000 1.000 0.980 1.000 1.000 1.000 1.000
htc374 0.833 0.733 0.700 0.980 0.960 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.987 1.000 0.921 0.933
htc375 0.933 0.933 1.000 0.860 0.920 0.941 1.000 0.800 0.890 0.980 1.000 1.000 1.000 0.925 0.983 1.000 1.000 1.000 0.933 0.933 0.960 1.000 1.000
htc376 0.733 0.800 0.900 0.980 0.960 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000 0.958 1.000 1.000 1.000 0.947 1.000
htc601 1.000 1.000 1.000 0.600 0.840 0.706 0.846 0.900 0.670 0.880 0.912 1.000 0.950 0.675 0.867 0.900 1.000 1.000 0.653 0.853 0.880 0.974 1.000
htc_rob 0.933 0.933 1.000 1.000 1.000 1.000 1.000 1.000 0.970 1.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000
iphone4 0.733 0.733 0.700 0.860 0.880 0.882 0.846 1.000 0.840 0.980 0.971 1.000 1.000 0.917 0.967 0.975 1.000 1.000 0.927 0.947 0.920 0.947 0.967
iphone5 0.700 0.733 0.700 0.720 0.800 0.882 0.769 0.800 0.830 0.880 0.971 1.000 1.000 0.800 0.883 0.975 1.000 1.000 0.780 0.827 0.920 0.842 0.867
iphone7 0.300 0.267 0.200 0.460 0.360 0.529 0.538 0.600 0.590 0.820 0.882 0.840 0.950 0.583 0.750 0.825 0.933 0.917 0.607 0.733 0.800 0.868 0.767
n8_594 1.000 1.000 1.000 0.940 0.960 1.000 1.000 1.000 0.980 1.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n97_430 0.900 1.000 1.000 0.940 1.000 1.000 1.000 1.000 0.980 1.000 1.000 1.000 1.000 0.942 1.000 1.000 1.000 1.000 0.980 1.000 1.000 1.000 1.000
n97_444 0.800 1.000 0.800 0.900 1.000 1.000 1.000 0.900 0.910 1.000 1.000 1.000 1.000 0.933 1.000 1.000 1.000 1.000 0.947 0.973 0.980 0.974 1.000
n97_618 0.867 0.933 0.900 0.860 0.960 1.000 1.000 1.000 0.890 1.000 1.000 1.000 1.000 0.908 1.000 1.000 1.000 1.000 0.947 0.960 0.960 1.000 1.000
n97_620 0.700 0.800 0.700 0.820 0.920 0.882 1.000 1.000 0.950 1.000 1.000 1.000 1.000 0.933 1.000 1.000 1.000 1.000 0.933 0.947 0.960 1.000 0.967
nok_128 0.367 0.267 0.400 0.320 0.560 0.588 0.769 0.700 0.510 0.800 0.853 0.960 1.000 0.550 0.750 0.900 0.967 1.000 0.667 0.720 0.700 0.816 0.800
nok_e5 0.900 0.800 0.800 0.900 0.920 1.000 1.000 1.000 0.930 1.000 1.000 1.000 1.000 0.958 1.000 1.000 1.000 1.000 0.973 0.987 0.980 1.000 1.000
nok_e62 0.867 1.000 1.000 0.920 0.960 0.941 0.923 1.000 0.960 1.000 1.000 1.000 1.000 0.983 1.000 1.000 1.000 1.000 0.967 1.000 1.000 1.000 1.000
treo 0.967 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

30 50 100 120 150
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APPENDIX E: COMBINED CLASSIFIER ADDITIONAL DATA 

Table 52.   Phone to Author Pairing Matrix 

matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
bberry 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800
htc371 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045
htc373 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388
htc374 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734
htc375 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921
htc376 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546
htc601 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744
htc_rob 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155

Phones iphone4 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693
iphone5 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599
iphone7 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742
n8_594 6886 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111
n97_430 7100 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886
n97_444 7241 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100
n97_618 7754 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241
n97_620 7958 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754
nok_128 8164 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958
nok_e5 8487 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164
nok_e62 9417 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487
treo 9800 1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417

Authors
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Table 53.   Confusion Matrix for Normalized Combined Classifier Matrix Pairing 1 Using 30 
Tweets/Signal Vectors With One Tweet/Signal Vector per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 28 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
| 1388 1 25 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 1 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

1921 0 0 0 25 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2546 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2744 1 1 0 4 0 23 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3155 0 0 0 0 0 0 30 19 0 0 0 0 0 0 0 0 0 0 1 0
3693 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 26 1 2 1 0 0 0 0 0 0 0 0
5742 0 0 0 0 0 0 0 0 7 23 0 0 0 0 0 0 0 0 0 0
6111 1 0 0 0 0 1 0 1 5 4 17 0 0 0 0 0 0 1 0 0
6886 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 1 28 0 0 1 0 0 0 0
7241 0 1 0 0 0 0 0 0 0 0 1 2 1 25 0 0 0 0 0 0
7754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 3 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 1 5 1 0 23 0 0 0 0
8164 3 1 0 0 0 0 0 0 0 0 1 0 2 6 3 0 13 1 0 0
8487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 28 0 0
9417 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 27 0
9800 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29  
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Table 54.   Confusion Matrix for Non-normalized Combined Classifier Matrix Pairing 1 Using 
30 Tweets/Signal Vectors With One Tweet/Signal Vector per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 9 2 0 2 2 0 0 1 3 0 1 3 1 1 1 3 0 1 0 0
| 1388 0 6 0 2 1 4 2 1 4 1 2 2 0 1 0 1 0 1 0 2
v 1734 1 5 4 0 1 0 3 3 0 1 1 3 0 0 0 4 0 0 3 1

1921 0 5 3 4 1 4 5 0 0 0 0 0 1 2 1 3 0 1 0 0
2546 0 0 0 4 11 8 1 0 2 0 1 0 1 0 0 0 0 0 1 1
2744 0 2 1 2 4 10 0 0 3 1 1 0 1 0 0 1 0 1 2 1
3155 0 0 1 6 6 9 11 7 3 0 0 1 1 1 1 0 1 2 0 0
3693 0 0 0 1 1 0 0 7 0 0 0 0 0 0 0 0 1 0 0 0
5599 0 0 0 0 0 0 0 0 27 0 2 0 1 0 0 0 0 0 0 0
5742 3 1 1 0 1 0 4 0 4 10 1 1 1 0 0 1 0 0 2 0
6111 0 0 0 2 0 0 1 0 8 1 16 0 0 1 0 0 0 0 1 0
6886 0 2 0 0 1 1 2 0 2 0 1 17 1 0 0 2 1 0 0 0
7100 0 1 3 0 2 2 2 1 4 0 0 0 15 0 0 0 0 0 0 0
7241 0 1 0 0 2 1 5 0 3 0 4 2 0 10 0 2 0 0 0 0
7754 0 1 0 0 1 1 1 0 0 0 0 4 0 1 11 3 0 0 5 2
7958 0 1 2 1 0 1 3 0 0 1 1 1 2 1 0 14 0 0 2 0
8164 0 1 0 2 0 1 2 0 0 0 3 0 1 0 0 1 18 0 0 1
8487 1 2 0 2 2 0 1 1 3 0 1 0 0 0 1 1 0 15 0 0
9417 1 1 0 0 0 2 3 1 2 0 0 2 0 0 2 2 0 1 13 0
9800 0 0 0 1 4 2 1 0 0 0 2 1 3 0 0 0 1 1 0 14  
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Table 55.   Confusion Matrix for Normalized Combined Classifier Matrix Pairing 1 Using 30 
Tweets/Signal Vectors With Three Tweets/Signal Vectors per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| 1388 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1921 0 0 0 7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2546 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2744 0 0 0 1 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 9 0 1 0 0 0 0 0 0 0 0 0
5742 0 0 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0
6111 0 0 0 0 0 0 0 1 0 0 8 0 0 1 0 0 0 0 0 0
6886 0 0 0 0 0 0 0 0 0 0 1 10 1 0 0 0 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0
7241 0 0 0 0 0 0 0 0 0 0 0 1 0 8 0 0 1 0 0 0
7754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0
8164 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 6 0 0 0
8487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 8 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
9800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10  
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Table 56.   Confusion Matrix for Non-normalized Combined Classifier Matrix Pairing 1 Using 
30 Tweets/Signal Vectors With Three Tweets/Signal Vectors per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 6 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0
| 1388 0 5 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 4 2 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0

1921 0 4 1 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0
2546 0 0 0 0 7 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
2744 0 2 0 1 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 3 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 1 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0
5742 0 0 1 0 0 1 2 0 2 4 0 0 0 0 0 0 0 0 0 0
6111 0 1 0 0 0 0 1 0 2 0 6 0 0 0 0 0 0 0 0 0
6886 0 1 0 0 1 1 1 0 0 0 0 6 0 0 0 0 0 0 0 0
7100 0 0 0 0 0 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0
7241 0 0 0 0 0 0 0 0 1 0 0 2 0 6 0 1 0 0 0 0
7754 0 0 0 0 0 0 1 0 0 0 0 1 0 0 6 1 0 0 1 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0
8164 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 8 0 0 0
8487 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 9 0 0
9417 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 8 0
9800 0 0 0 1 2 0 0 0 0 0 1 0 2 0 0 0 0 0 0 4  
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Table 57.   Confusion Matrix for Normalized Combined Classifier Matrix Pairing 1 Using 50 
Tweets/Signal Vectors With One Tweet/Signal Vector per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 48 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
| 1388 0 47 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
v 1734 0 0 48 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1921 0 0 0 43 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2546 0 0 1 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2744 1 0 1 13 1 31 1 0 0 0 0 0 0 0 0 0 0 0 2 0
3155 0 0 0 0 0 0 49 1 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 1 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 1 0
5599 0 0 0 0 0 0 1 0 46 2 0 1 0 0 0 0 0 0 0 0
5742 0 0 0 0 0 0 0 0 6 40 4 0 0 0 0 0 0 0 0 0
6111 1 0 0 0 0 1 1 0 2 6 35 0 0 1 0 0 1 2 0 0
6886 0 0 0 0 0 0 0 0 0 0 1 48 0 0 0 1 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 2 0 0 0 0
7241 0 0 0 0 0 0 0 0 0 0 0 2 1 46 0 0 1 0 0 0
7754 0 0 0 0 0 0 0 0 0 0 0 0 2 0 45 0 0 3 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 44 0 0 0 0
8164 3 1 0 0 0 0 0 0 0 0 4 2 3 8 4 1 22 2 0 0
8487 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 47 0 0
9417 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 46 0
9800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50  
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Table 58.   Confusion Matrix for Non-normalized Combined Classifier Matrix Pairing 1 Using 
50 Tweets/Signal Vectors With One Tweet/Signal Vector per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 19 4 0 0 2 3 1 2 3 3 3 1 2 2 0 3 1 0 0 1
| 1388 0 16 0 3 1 9 2 1 5 3 4 2 0 0 0 0 1 0 2 1
v 1734 0 13 10 1 0 2 3 5 0 3 1 2 0 2 0 3 2 0 1 2

1921 1 15 4 14 0 8 1 0 1 1 2 0 0 0 0 1 1 0 2 0
2546 0 0 0 4 13 17 4 0 4 0 2 0 1 1 0 2 0 2 0 0
2744 0 2 1 3 14 20 0 0 2 1 2 1 2 0 0 0 0 0 1 1
3155 0 1 1 4 3 12 25 0 0 0 1 1 0 1 0 0 0 0 1 0
3693 0 0 0 0 4 1 5 24 3 0 1 3 0 0 1 0 3 3 1 1
5599 0 0 0 0 1 0 1 0 45 1 2 0 0 0 0 0 0 0 0 0
5742 3 4 0 0 2 3 3 2 2 20 2 3 3 1 1 0 0 0 1 0
6111 0 4 0 1 1 5 2 0 4 0 29 0 1 1 0 1 0 0 0 1
6886 1 5 0 0 1 2 1 0 1 3 2 23 2 0 0 8 0 0 1 0
7100 0 1 0 1 4 3 2 0 4 1 1 2 29 0 1 1 0 0 0 0
7241 0 4 0 1 2 1 2 0 3 1 4 2 0 26 0 1 2 0 0 1
7754 0 2 0 1 2 4 2 0 0 2 0 2 4 0 27 0 1 1 2 0
7958 0 2 0 1 0 3 1 0 0 0 2 7 2 3 1 28 0 0 0 0
8164 0 6 0 0 0 2 0 0 2 1 5 2 2 2 0 0 23 2 2 1
8487 1 2 0 0 1 3 4 1 4 0 3 0 0 0 2 0 0 28 0 1
9417 1 5 2 4 2 1 1 3 1 2 0 0 2 0 1 0 0 0 25 0
9800 0 1 0 2 11 2 2 0 2 0 3 1 3 0 0 0 0 0 0 23  
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Table 59.   Confusion Matrix for Normalized Combined Classifier Matrix Pairing 1 Using 50 
Tweets/Signal Vectors With Three Tweets/Signal Vectors per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
| 1388 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1921 0 0 0 16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2546 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2744 0 0 0 2 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0
5742 0 0 0 0 0 0 0 0 1 16 0 0 0 0 0 0 0 0 0 0
6111 0 0 0 0 0 0 0 0 0 3 12 0 0 1 0 0 1 0 0 0
6886 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 1 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0
7241 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0
7754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 15 0 0 0 0
8164 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 0 12 0 0 0
8487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0
9800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17  
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Table 60.   Confusion Matrix for Non-normalized Combined Classifier Matrix Pairing 1 Using 
50 Tweets/Signal Vectors With Three Tweets/Signal Vectors per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 12 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
| 1388 0 16 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 2 8 0 0 3 1 0 0 1 0 0 0 0 1 1 0 0 0 0

1921 0 0 0 12 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2546 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2744 0 1 0 1 0 14 0 0 0 0 0 0 1 0 0 0 0 0 0 0
3155 0 0 0 1 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 1 0 0 15 1 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0
5742 0 1 1 1 0 2 0 0 1 11 0 0 0 0 0 0 0 0 0 0
6111 0 0 0 2 0 1 1 0 1 0 12 0 0 0 0 0 0 0 0 0
6886 0 3 0 0 1 0 0 0 1 0 0 8 1 0 0 2 0 0 1 0
7100 0 0 0 0 0 1 0 0 0 0 0 0 16 0 0 0 0 0 0 0
7241 0 1 0 0 1 2 0 0 1 0 0 0 0 10 0 1 1 0 0 0
7754 2 0 0 0 2 1 0 0 0 1 0 1 0 0 10 0 0 0 0 0
7958 1 0 0 1 0 1 0 0 0 0 0 2 0 0 0 12 0 0 0 0
8164 0 3 0 0 0 0 0 0 1 0 2 1 0 0 1 0 9 0 0 0
8487 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 14 0 0
9417 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 13 0
9800 0 0 0 1 4 0 0 0 0 0 1 0 1 0 0 0 0 0 0 10  
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Table 61.   Confusion Matrix for Normalized Combined Classifier Matrix Pairing 1 Using 120 
Tweets/Signal Vectors With One Tweet/Signal Vector per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
| 1388 1 113 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
v 1734 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1921 0 0 0 111 0 8 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2546 0 0 0 0 119 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2744 1 0 0 26 0 91 0 0 0 0 0 0 0 0 0 0 0 0 2 0
3155 0 0 0 1 0 0 119 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 1 0 115 3 1 0 0 0 0 0 0 0 0 0
5742 0 0 0 0 0 0 0 0 7 106 7 0 0 0 0 0 0 0 0 0
6111 0 0 0 0 0 0 1 0 4 8 102 0 0 1 0 0 2 2 0 0
6886 0 0 0 0 0 0 0 0 0 0 0 118 1 0 0 1 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 0 118 0 0 2 0 0 0 0
7241 0 0 0 0 0 0 0 0 0 0 0 0 1 114 0 1 4 0 0 0
7754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117 0 0 3 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 114 0 0 0 0
8164 12 1 0 0 0 0 1 0 0 0 3 0 1 13 9 1 78 1 0 0
8487 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 119 0 0
9417 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 117 0
9800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120  
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Table 62.   Confusion Matrix for Non-normalized Combined Classifier Matrix Pairing 1 Using 
120 Tweets/Signal Vectors With One Tweet/Signal Vector per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 67 10 0 0 2 4 2 8 5 2 4 1 4 3 0 5 2 1 0 0
| 1388 0 39 0 7 0 22 8 2 9 5 7 0 2 1 1 0 1 0 14 2
v 1734 0 45 31 1 0 6 2 11 1 4 1 3 1 4 1 4 3 0 1 1

1921 0 27 18 44 5 13 6 0 0 0 2 1 0 1 0 1 0 0 1 1
2546 0 1 0 20 39 45 2 0 7 1 1 1 0 0 0 1 0 0 2 0
2744 0 2 1 1 38 62 0 1 5 2 1 0 1 0 0 0 0 2 1 3
3155 0 0 1 12 8 41 49 1 0 0 1 0 1 0 1 0 0 1 1 3
3693 3 0 0 0 0 3 16 65 14 3 2 2 1 0 2 0 1 7 0 1
5599 1 1 0 0 4 1 0 0 109 0 2 0 0 0 0 0 0 0 1 1
5742 1 5 0 3 0 15 5 10 5 66 3 1 0 1 1 0 0 0 3 1
6111 0 7 0 3 2 9 2 0 3 3 86 3 0 0 0 0 1 0 1 0
6886 1 2 0 1 0 1 0 4 3 0 2 92 2 1 0 10 0 0 1 0
7100 0 3 0 0 2 9 1 0 1 1 1 1 90 0 3 7 1 0 0 0
7241 0 8 1 2 3 2 0 0 3 2 4 1 3 84 0 3 4 0 0 0
7754 2 5 0 1 1 8 2 4 2 3 1 2 5 2 79 2 1 0 0 0
7958 0 4 1 0 0 2 0 4 2 0 2 6 3 2 2 91 0 0 0 1
8164 4 7 0 2 3 1 1 1 4 2 10 2 2 2 5 2 70 1 0 1
8487 1 2 0 0 2 8 3 3 1 2 4 0 1 0 2 0 0 89 1 1
9417 1 2 5 4 1 15 1 8 0 1 1 0 0 1 0 1 0 0 79 0
9800 0 1 0 5 7 5 2 0 0 0 1 2 4 0 0 3 0 0 0 90  
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Table 63.   Confusion Matrix for Normalized Combined Classifier Matrix Pairing 1 Using 120 
Tweets/Signal Vectors With Three Tweets/Signal Vectors per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| 1388 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1921 0 0 0 39 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2546 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2744 0 0 0 2 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 0 0 1 40 0 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0
5742 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
6111 0 0 0 0 0 0 0 0 0 2 38 0 0 0 0 0 0 0 0 0
6886 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0
7241 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0
7754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0
8164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0
8487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0
9800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 40  
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Table 64.   Confusion Matrix for Non-normalized Combined Classifier Matrix Pairing 1 Using 
120 Tweets/Signal Vectors With Three Tweets/Signal Vectors per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 36 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
| 1388 0 25 0 0 0 11 0 0 0 1 0 0 0 0 0 0 0 0 3 0
v 1734 1 22 15 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

1921 0 11 2 22 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2546 0 0 0 2 19 18 0 0 1 0 0 0 0 0 0 0 0 0 0 0
2744 0 0 0 0 7 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 2 2 15 20 0 0 0 0 0 0 0 1 0 0 0 0 0
3693 0 0 0 0 0 1 6 28 6 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0
5742 0 0 1 1 0 4 0 1 1 31 0 0 0 0 0 0 0 0 1 0
6111 0 0 0 0 0 2 1 0 0 0 37 0 0 0 0 0 0 0 0 0
6886 0 0 0 0 0 0 0 0 1 0 0 38 0 0 0 1 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0
7241 0 1 0 0 0 0 0 0 0 0 0 0 0 38 0 0 1 0 0 0
7754 0 1 0 0 0 2 0 0 0 0 0 0 0 0 37 0 0 0 0 0
7958 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 39 0 0 0 0
8164 0 2 0 0 0 0 0 1 1 0 2 0 0 0 0 0 34 0 0 0
8487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 39 0 0
9417 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 37 0
9800 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 39  
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Table 65.   Confusion Matrix for Normalized Combined Classifier Matrix Pairing 1 Using 120 
Tweets/Signal Vectors With Five Tweets/Signal Vectors per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 22 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
| 1388 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 1 21 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1921 0 0 0 22 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2546 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2744 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 0 0 0 22 2 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0
5742 0 0 0 0 0 2 0 0 0 22 0 0 0 0 0 0 0 0 0 0
6111 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0
6886 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0
7241 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0
7754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 23 0 0 0 0
8164 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 22 0 0 0
8487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0
9800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24  
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Table 66.   Confusion Matrix for Non-normalized Combined Classifier Matrix Pairing 1 Using 
120 Tweets/Signal Vectors With Five Tweets/Signal Vectors per Training Set 

label ‐>
1045 1388 1734 1921 2546 2744 3155 3693 5599 5742 6111 6886 7100 7241 7754 7958 8164 8487 9417 9800

truth 1045 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| 1388 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1734 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1921 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2546 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2744 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3155 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0
3693 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0
5599 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0
5742 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0
6111 0 0 0 0 0 0 0 0 0 2 22 0 0 0 0 0 0 0 0 0
6886 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0
7100 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0
7241 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0
7754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0
7958 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0
8164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0
8487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0
9417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0
9800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24  
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Table 67.   Per Pair Combined Classifier Accuracy Results by Total Tweets/Signal Vectors 
and Tweets/Signal Vectors per Training Set 

Phone Author 1 3 1 3 1 3 5 1 3 1 3 1 3 5
bberry 1045 0.933 1.000 0.960 0.941 0.983 1.000 0.917 0.300 0.600 0.380 0.706 0.558 0.900 1.000
htc371 1388 0.833 1.000 0.940 1.000 0.942 1.000 1.000 0.200 0.500 0.320 0.941 0.325 0.625 1.000
htc373 1734 0.900 0.800 0.960 1.000 1.000 1.000 0.875 0.133 0.200 0.200 0.471 0.258 0.375 1.000
htc374 1921 0.833 0.700 0.843 0.941 0.925 0.975 0.917 0.133 0.000 0.275 0.706 0.367 0.550 1.000
htc375 2546 0.967 1.000 0.980 1.000 0.992 1.000 1.000 0.367 0.700 0.260 0.941 0.325 0.475 1.000
htc376 2744 0.767 0.900 0.620 0.882 0.758 0.950 1.000 0.333 0.500 0.400 0.824 0.517 0.825 1.000
htc601 3155 0.600 1.000 0.980 1.000 0.992 1.000 1.000 0.220 0.500 0.500 0.941 0.408 0.500 1.000
htc_rob 3693 1.000 1.000 0.960 1.000 1.000 0.976 0.917 0.700 0.600 0.480 0.882 0.542 0.683 1.000
iphone4 5599 0.867 0.900 0.920 1.000 0.958 1.000 1.000 0.900 1.000 0.900 1.000 0.908 1.000 1.000
iphone5 5742 0.767 0.900 0.800 0.941 0.883 1.000 0.917 0.333 0.400 0.400 0.647 0.550 0.775 1.000
iphone7 6111 0.567 0.800 0.700 0.706 0.850 0.950 1.000 0.533 0.600 0.580 0.706 0.717 0.925 0.917
n8_594 6886 1.000 0.833 0.960 0.941 0.983 1.000 1.000 0.567 0.600 0.460 0.471 0.767 0.950 1.000
n97_430 7100 0.933 1.000 0.960 1.000 0.983 1.000 1.000 0.500 0.900 0.580 0.941 0.750 1.000 1.000
n97_444 7241 0.833 0.800 0.920 1.000 0.950 1.000 1.000 0.333 0.600 0.520 0.588 0.700 0.950 1.000
n97_618 7754 0.900 1.000 0.900 1.000 0.975 1.000 1.000 0.367 0.600 0.540 0.588 0.658 0.925 1.000
n97_620 7958 0.767 0.900 0.880 0.882 0.950 1.000 0.958 0.467 0.900 0.560 0.706 0.758 0.975 1.000
nok_128 8164 0.433 0.600 0.440 0.706 0.650 1.000 0.917 0.600 0.800 0.460 0.529 0.583 0.850 1.000
nok_e5 8487 0.933 0.800 0.940 1.000 0.992 1.000 1.000 0.500 0.900 0.560 0.824 0.742 0.975 1.000
nok_e62 9417 0.900 1.000 0.920 1.000 0.975 1.000 1.000 0.433 0.800 0.500 0.765 0.658 0.925 1.000
treo 9800 0.967 0.909 1.000 1.000 1.000 0.976 1.000 0.467 0.400 0.460 0.588 0.750 0.951 1.000

Normalized Non‐normalized
30 50 120 30 50 120
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Figure 51.   Averaged Accuracy Results of Normalized 
Combined Classifiers for Each Phone-Author Pairing 

Matrix Using One Tweet per Training Set 

 
Figure 52.   Averaged Accuracy Results of Normalized 

Combined Classifiers for Each Phone-Author Pairing 
Matrix Using Three Tweets per Training Set
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Figure 53.   Averaged Accuracy Results of Non-Normalized 

Combined Classifiers for Each Phone-Author Pairing 
Matrix Using One Tweet per Training Set 

 

 
Figure 54.   Averaged Accuracy Results of Non-Normalized 

Combined Classifiers for Each Phone-Author Pairing 
Matrix Using Three Tweets per Training Set 
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